Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зародыши новой фазы

    При фотографировании ограничиваются очень короткой экспозицией, получая лишь так называемое скрытое изображение , при котором количество выделившегося серебра еще так мало, что не изменяет внешнего вида эмульсии. Однако мельчайшие частицы серебра являются зародышами новой фазы, облегчающей дальнейшее разложение бромистого серебра под действием восстановителей при проявлении ( 140 и 202). Те участки слоя, которые подвергались более сильному освещению, содержат больше серебра гга местах скрытого изображения. На них быстрее выделяется серебро при проявлении, в результате чего и получается видимое (негативное) изображение предмета. На этом проявление прекращают, и оставшееся неразложенным бромистое серебро удаляют раствором тиосульфата (гипосульфита) натрия. Для получения позитивного изображения процесс повторяют. [c.502]


    Во всех этих случаях переход от одной гомогенной фазы к другой протекает через промежуточное состояние, отвечающее микрогетерогенной системе, в которой зародыши новой фазы распределены внутри исходной фазы. Это промежуточное состояние вследствие множества границ раздела обладает повышенным запасом энергии, и ее создание требует энергии активации, определяемой энергией образования трехмерных зародышей. [c.329]

    Зародыши новой фазы продукта возникают тогда, когда локальные флуктуации энергии в кристалле исходного продукта достаточно велики, чтобы в определенных точках кристалла была превышена так называемая энергия активации образования зародыша. Зародыши возникают в тех точках кристалла, в которых энергия активации их образования наименьшая. Число зародышей, возникающих в определенный промежуток времени, зависит от числа активных точек, способных к образованию зародыша, и от средней энергии активации его образования. Точки, в которых может появиться зародыш, связаны обычно с такими структурными неоднородностями, как микро- и макродефекты. [c.258]

    Явление пересыщения было установлено (1795) впервые Т. Е. Ловицем, который открыл существование пересыщенных растворов и изучал их. Состояния пересыщенного пара, перегретой или переохлажденной жидкости, пересыщенного раствора и другие подобные им являются метастабильными состояниями ( 83). Возможность существования их связана с затруднениями в возникновении зародышей новой фазы, так как очень малый (в первый момент) размер выделяющихся частичек новой фазы увеличивает изотермические потенциалы вещества и делает эти частички менее устойчивыми. С этим же в большей или меньшей степени связана и сохраняемость метастабильных кристаллических фаз и стеклообразного состояния. [c.360]

    Различие степени пересыщения может влиять на направление процесса и на вид получаемых конечных продуктов. Так как наиболее устойчивая кристаллическая форма всегда обладает наименьшей растворимостью, то при повышении концентрации раствора прежде всего достигается состояние насыщения (затем пересыщения) именно в отношении этой формы. При дальнейшем повышении концентрации раствор вместе с тем может достигнуть насыщения (и пересыщения) и по отношению к более активным формам. В этих условиях легче могут образовываться кристаллы с различными дефектами структуры или становится возможным образование одной из метастабильных форм или начинается возникновение зародышей новой фазы (или новых фаз). В последнем случае, при возможности выделения вещества в двух кристаллических формах, преобладание той или другой из них в конечном продукте определяется соотношением скоростей процессов, а не термодинамической устойчивости этих форм. [c.361]


    Однако и трудности возникновения зародышей новой фазы, рассмотренные в 143, могут играть здесь важную роль, в особенности при выделении газов. Явление это еще недостаточно изучено, [c.453]

    На рис. 167 представлена тип-ичная кривая изменения скорости со временем для процессов, в которых отсутствуют готовые зародыши новой фазы, и следовательно, возможно значительное пересыщение. Это может иметь место и прн кристаллизации из переохлажденной жидкости илн из пересыщенного раствора, и при конденсации жидкости из пересыщенного пара, и в химических реакциях, сопровождающихся выделением новой фазы. [c.491]

    Наиболее знакомым примером является вскипание перегретой жидкости. Участок АВ кривой рис. 167) отвечает постепенному повышению степени пересыщения в результате изменения температуры или другим путем. При достижении такой степени пересыщения, при которой имевшиеся инородные частицы становятся способными служить центрами выделения или при которой достигается возможность самопроизвольного возникновения "зародышей новой фазы, процесс начинает протекать с быстро возрастающей скоростью (участок ВС), пока не будет исчерпано имевшееся пересыщение. [c.491]

    После этого, если возникшая фаза не удаляется из системы, процесс протекает дальше на образовавшейся поверхности раздела обычным порядком. Если же возникшая новая фаза удаляется из системы, как, например, при вскипании жидкости, то снова система должна достигнуть известного пересыщения для возникновения зародышей новой фазы, снова после эгого процесс протекает бурно до исчерпания пересыщения, и дальше все повторяется вновь. [c.491]

    В работе [129] было изучено изменение термодинамического потенциала Гиббса как функции радиуса зародыша и толщины слоя. Следуя логике данной работы, потенциал Гиббса единичного зародыша новой фазы радиусом г, окруженного сольватным слоем толщиной Л в дисперсионной среде, можно представить уравнением [c.86]

    Известны и другие процессы, физические и химические, протекающие с периодически повторяющимися возрастаниями скорости. В некоторых из них происходит не удаление новой фазы, а перемещение зоны взаимодействия при сохранении зародышей новой фазы на старом месте. [c.491]

    В основе полиморфных превращений железа лежит процесс кристаллизации они протекают через стадию образования и роста зародышей новой фазы с последующим формированием вокруг них кристаллов иной структуры. Ввиду узости температурных интервалов переходов а-железа в р-железо (142 С) и [c.39]

    Составляющая ДСх в уравнении (6) отвечает ноявлению избыточной поверхности при возникновении зародыша новой фазы [c.85]

    Чем определяется критический радиус зародыша новой фазы Как можно регулировать размеры частнц лиофобных дисперсных систем, получаемых методом конденсации  [c.179]

    При фрактальном строении зародыша новой фазы для него практически не существует энергетического барьера образования, связанного с возникновением поверхности раздела фаз. [c.72]

    Качественное изменение зародышей новой фазы - Образование новой фазы сопрово>кдается одновременным взаимодействием групповых химических составляющих системы с образованием зародышей новой фазы, смешанного состава. - Первоначальное преимущественное выделение в метастабильном состоянии системы структурных элементов новой фазы, качественно отличающихся от основного кристаллизующегося вещества и обладающих с ним коллоидно-химическим сродством Нативные, технологические ПАВ [c.250]

    В микрогетерогенных системах каждому метастабильному состоянию отвечает равновесие с частицей новой фазы определенного размера [180]. Особенностью такого равновесия является то, что одна из фаз находится в метастабильной, а другая - в стабильной области. При такой трактовке ширина метастабильной области определяется изменением размера равновесного зародыша новой фазы от нулевого до макроскопического и соот- [c.86]

    Для точной характеристики протяженности зародыша при его термодинамическом описании задают замкнутую геометрическую поверхность, закономерно изменяющую свою величину с изменением состояния системы в равновесных условиях. В качестве такой поверхности используют поверхность натяжения, к которой относят избытки экстенсивных свойств, получающиеся при мысленном продолжении внешней фазы до этой поверхности. Комплекс, получаемый объединением разделяющей поверхности со всей массой, заключенной внутри нее, называют зародышем новой фазы. Таким образом, реальную систему, состоящую из двух фаз и поверхностного слоя и внешней фазы (если внутренней фазы как таковой не существует), заменяют двумя телами - зародышем и средой - с четко определенной между ними границей [180]. [c.89]

    Зародыши новой фазы, возникнув при входе системы в зону метастабильности (рис.3.1),увеличиваются в размере при движении по ней, а при пересечении поверхности спинодали, где работа образования новой фазы минимальна или даже равна нулю [180], достигают критических размеров [c.91]

    В этих методах главным моментом является образование в системе зародышей новой фазы. Такие зародыши образуются в пересыщенных системах, где концентрация одного молекулярно-диспергированного компонента выше той концентрации, которая соответствует равновесию между молекулярно-диспергированным и конденсированным состояниями этого компонента (см. гл. 4). Таковыми являются пересыщенные растворы, переохлажденные пары и др. [c.9]

    Появление новой фазы в пересыщенной системе представляет собой кинетическую проблему. Кинетика этого процесса (скорость образования новой фазы) очень существенно зависит от величины некоего энергетического барьера, получившего название работы образования зародыша новой фазы. Гиббс [4] показал, что эта работа может быть рассчитана термодинамическим путем, и нашел, что она равна 1/3 свободной поверхностной энергии капли такого размера, при котором давление ее пара равно давлению пара в пе- [c.94]


    Конденсационная структура может быть получена и при нон-денсагтии дисперсной фазы из пересыщенных паров, растворов или расплавов. При обра.човании и росте зародышей новой фазы из концентрированных пересыщенных систем может возникнуть непрерывный сетчатый каркас путем срастания и переплетения растущих частиц дисперсной фазы. Если эти частины представляют собой кристаллы, возникающие структуры называют кристаллизационно-конденсационными структурами тБсрдепия. [c.340]

    Лангмюр еще в 1916 г. при кинетическом обосновании правила фаз показал сложность кинетических механизмов, приводящих к многофазной системе, удовлетворяющей условиям термодинамического равновесия [105]. В соответствии с реальным механизмом топо-химических реакций, скорость перехода фаз в катализаторе может определяться как скоростью появления зародышей новой фазы, так и скоростью диффузии атомов в кристаллической решетке и скоростью перестройки последней. Для окисных ванадиевых катализаторов, например, переход V2O4 VjOj протекает по диффузионному механизму [106]. [c.51]

    Таким образом, если образовавшиеся зародыши новой фазы не удаляются из реакщТЬнной среды, то дальнейший ход процесса обычно заключается в их росте. При этом по мере увеличения их размеров окружающая фаза становится неустойчивой по отношению к ним (пepe ь]н eннoй, перегретой нли переохлажденной и т. д.), и они обычно очень быстро достигают размеров крупных частиц, вследствие чего поверхностные силы перестают влиять в ощутимой [c.490]

    Восстановление производят обычно азотно-водородной смесью в колонне синтеза или в специальном аппарате. При постепенном нагревании процесс начинается с медленного индукционного периода, сопровождающегося образованием зародышей новой фазы. Автокаталптический период начинается с 415—425°С и заканчивается при 450—460 °С. Он характеризуется появлением новой фазы (a-Fe) и выделением большого количества паров воды. В последнем периоде (довосстановление катализатора) идет восстановление оставшейся незначительной части окислов железа и удале- [c.164]

    Рассмотрим сначала конденсацию жидкости из пара. При охлаждении пара до температуры Тпар, при которой пар и макроколичество жидкости находятся в равновесии, новая фаза (жидкость) не появляется (рис. 97, точка А). И только при переохлаждении пара, иногда на несколько десятков градусов, начинается образование зародышей новой фазы — мельчайших капелек пара, которые затем начинают быстро расти (точка В). При этом выделяется теплота конденсации, температура повышается до и между паром и жидкостью устанавливается термодинамическое равновесие (точка С). [c.376]

    Высокомолекулярные соединения в результате межмолекулярных сил притяжения ассоциируют друг с другом, образуя зародыши новой фазы или первичные ССЕ. Зародыши или первичные ССЕ могут иметь различные геометрические формы. Если формированию зародыпга не препятствует вязкость диспер-сиоииой среды, он получается правильной формы (сферической, цилиндрической и т. д.). Ипая картина наблюдается при формировании зародышей в вязкой среде (гудроны, крекинг-остатки, пеки). В этом случае возникающий зародыш может принимать причудливые формы (рис. 9). [c.75]

    Член А Ой нредставляет собой работу диспергирования, не сопровождающуюся изменением агрегатного состояния и химического состава вещества дисперсной фазы. Члены АО,- и АС, , в уравнении (5) отвечают работе образования дисперсной частицы соответственно при изменении агрегатного состояния и химического состава вещества дисперсной фазы. Эти члены описывают работу гомогенного образования зародышей новой фазы в исходной маточной среде. [c.84]

    В отсутствие пересыщения pix = llv зависимость АС (г) имеет вид параболы. При углублении в метастабильную область J,x>- .lv на кривой С (г) появляется хмаксимум, координаты которого (6 кр и Гкр) уменьшаются но мере роста пересыщения. Работа образования критического зародыша представляет собой высоту энергетического барьера, который необходимо преодолеть для того, чтобы ироцесс роста зародышей новой фазы шел самопроизвольно (рис. 16). [c.86]

    Известно, что рост зародышей новой фазы с радиусом, боль-игим критического, осуществляется в одном из двух крайних [c.87]

    Критический зародыш новой фазы (Гиббс) представляет собой активированный комплекс (переходное состояние) системы. Движение системы через переходное состояние является результатом флюктуации и носит характер Врауновского движения в противоположность инерционному двюкению в теории химических реакций Эйринга. [c.5]

    На диаграмме состояний однокомпонентной системы существует лишь одна рфитиче-ская точка, в бинарных системах существуют линии критических точек (критические кривые), при этом возможны критические точки равновесия жидкость - газ, двух жидких фаз, дв)- газовых или твердых фаз. Переход системы из однофазного состояния в двухфазное вне критической точки, и изменение состояния в самой критической точке существенно различаются В первом случае при расслаивании на две фазы переход начинается с появления небольшого количества (зародыша) второй фазы, свойства которой отличаются от свойств первой фазы, что сопровождается выделением или поглощением теплоты ФП. Поскольку возникновение зародышей приводит к появлению поверхности раздела фаз и поверхностной энергии, цля его рождения требуется определенная энергия. Это означает, что такой переход (1-го рола) может начаться лишь при некотором переохлаждении (перегреве) вещества, способствующем появлению устойчивых зародышей новой фазы. [c.21]

    I. Каков элементарный акт упорядочения. Т еории кристаллизации поликристаллических материалов в большей своей части базируются на постулировании флуктуационного преодоления энергетического барьера при образовании зародышей новой фазы (центров кристаллизации или конденсации), го есть образовании устойчивой поверхности и дальнейших эле.ментарных актах присоединения и роста этой фазы [10]. [c.16]

    В данной модели, основанной на классическом расчете радиуса критического зародыша новой фазы (уравнение Толмэна), введено понятие межфазной толщины, равной диаметру молекулы растворителя. Степень пересыщения раствора, рассчитывается в зависимости от отношения радиуса частиц растворенного вещества к диаметру молекулы растворителя. [c.78]

    Как известно, из общих принципов статистической механики, даже в термодинамически устойчивых системах происходят флуктуации плотности, под которыми понимают локальные отклонения ее от нормального состояния. Гомофазные флуктуации плотности находятся в пределах, совместимых с сохранением данного агрегатного состояния системы. Гетерофазные флуктуации плотности соответствуют образованию какой-либо другой фазы рассматриваемого вещества и выходят за пределы, совместимые с исходным агрегатным состоянием. Пока основная фаза остается термодинамически устойчивой, зародыши новой фазы, гомофазные флуктуации, возникают и гибнут, достигая незначительных размеров и не проявляя тенденции к росту. Флукгу-ации не имеют границы раздела с окружающей их средой, и могут вызываться, например, тепловым движением молекул. [c.45]

    Изменение внешних условий способствует укрупнению дозародышевых комплексов и переходу их в надмолекулярные образования. Создание надмолекулярных образований происходит вследствие объединения, в том числе атомов, ионов или молекул. Надмолекулярные образования, или надмолекулярные частицы, возникают в случае достижения основной фазой термодинамически неустойчивого метастабиль-ного состояния, характеризующегося совокупностью внутреннего состояния системы и внешних условий, при которых возможно возникновение и начальное развитие новой фазы с достаточной для ее обнаружения скоростью. При этом гетерофазные флуктуации после достижения ими некоторого критического размера способны к дальнейшему росту и развитию, образуя таким образом зародыши новой фазы, которые можно определить как наименьшие образования надмолекулярных частиц, способные к самостоятельному существованию и образующие новую фазу системы. Подобные единичные зародыши новой фазы называют агрегатом. [c.46]

    Внешняя целостность жидкого тела является до некоторой степени кажущейся, На самом деле оно пронизано множеством поверхностей разрыва, которые при отсутствии растягивающих внешних усилий не успевают развиться, однако спонтанно исчезают в одних местах, одновременно возникая в друтих и образуя в теле, в каждый данный момент времени совокупность микрополостей (кавитаций) в виде трещин, дырок и т.п. Возникновение и исчезновение этих микрополостей является результатом флуктуаций плотности, связанных с тепловым движением. Подобные флуктуации несколько искажают однородность тела в малых объемах, не нарушая ео существенным образом. В макроскопически однородном теле до некоторых граничных внешних условий yп e твyют лишь гомофазные флуктуации. При этом не исключается существование гетерофазных флуктуаций, приводящих при незначительном изменении внешних условий к образованию зародышей новой фазы, например возникновению в жидкости твердой фазы при пониженных температурах, либо паровых пузырьков — при повышенных (естественно, при соответствующих других внешних условиях). Причем значения этих температур находятся вблизи температур застывания (помутнения), либо кипения жидкости. [c.87]

    Термодинамика микрогетерогенных систем не ограничивает минимальный размер зародыша, допуская, что состоянию теоретического предельного насыщения, которое конечно, отвечает обращение радиуса поверхности натяжения в н>ль [180]. Следовательно, минимальным зародышем новой фазы может быть отдельная макромолекула или ее фрагмент, что согласуется с представлениями П.А.Ребиндера о нижнем пределе размера кол. юидных частиц [175] "Ее (частицы дисперсной фазы) размеры во всех трех нзмерения.х должны превышать по меньшей мере удвоенную [c.88]


Смотреть страницы где упоминается термин Зародыши новой фазы: [c.333]    [c.259]    [c.404]    [c.173]    [c.363]    [c.101]    [c.37]    [c.38]    [c.38]    [c.174]    [c.89]    [c.90]   
Введение в электрохимическую кинетику 1983 (1983) -- [ c.313 ]

Теоретическая электрохимия Издание 3 (1975) -- [ c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Зародыш

Зародыш новой фазы двухмерный

Зародыши новой фазы двумерные

Зародыши новой фазы трехмерные

Зарождение новой фазы критический зародыш

Зарождение новой фазы частота образования зародышей

Кинетика возникновения зародышей новой фазы в метастабильной системе

Критические зародыш новой фазы

Понятие зародыша новой фазы

Работа образования двумерного зародыша новой фазы

Теория образования зародышей новой фазы

Термодинамические основы образования зародышей новой фазы



© 2025 chem21.info Реклама на сайте