Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватный слой формирование

    Механизм и кинетика формирования сольватного слоя в сложной структурной единице [c.55]

    Разность скоростей формирования и разрушения сольватных слоев по мере изменения РС среды (равновесие достигается быстро) определяет толщину сольватного слоя на поверхности ассоциата для данного вида растворителя. [c.60]

    Рассмотрим второй случай влияния РС среды иа надмолекулярную структуру, неспособную растворяться в нефтяной системе (кристаллит). Поскольку размер кристаллитов в процессе растворения не меняется, образование сольватных слоев формально удобно рассматривать как необратимую реакцию первого порядка. Для этого можно считать, что к концу формирования слоя толщины его будет равна бос. [c.63]


    Тогда дифференциальное уравнение скорости формирования сольватного слоя будет иметь вид  [c.64]

    При определенной концентрации первичных ССЕ в НДС, когда вероятность нх столкновения достаточно высока, в системе образуются вторичные ССЕ. Авторами работы [127] для обозначения результата взаимодействия первичных ССЕ предлагается термин сложная структура и рассматриваются возможные варианты такого взаимодействия. Условия формирования вторичных ССЕ заключаются в отсутствии стерических затруднений к сближению первичных ССЕ и выполнении следующего соотношения кинетическая энергия молекул НДС должна быть меньше энергии парного взаимодействия молекул, входящих в состав сольватных слоев сближающихся первичных ССЕ. [c.80]

    По мере перехода из молекулярного в свободно-дисперсное, а затем и в связно-дисперсное состояние непрерывно изменяется структурно-механическая прочность. На первом этапе формирования первичных ССЕ толстые адсорбционно-сольватные слои, а также отсутствие связи между ССЕ обусловливает свойства НДС сравнительно низкую механическую прочность, структурную вязкость, высокую кинетическую устойчивость. Низкая механическая прочность НДС обусловлена тем, что силы ММВ в дисперсных частицах действуют через адсорбцион- [c.128]

    При Гэ = Гт Уа = 1—система агрегативно устойчива агрега-тивная устойчивость объясняется адсорбцией иа поверхности ядер ССЕ поверхностно-активных веществ с формированием вокруг ядер адсорбционно-сольватных слоев значительной толщины. [c.131]

    Обидим для каталитических процессов на поверхности твердых катализаторов является нагрев сырья (бензиновых, дизельных, вакуумных дистиллятов, мазутов) до соответствующих температур ири определенном давлении, контакт с поверхностью катализатора (обычно в реакторах), разделение продуктов реакции и регенерация катализатора (в регенераторах). При нагреве нефтяного сырья в змеевиках печи формируется ССЕ различной степени полидисперсности и продолжительности жизни. Под продолжительностью жизни ССЕ понимается период от начала возникновения ССЕ в исходной фазе до ее разрушения с формированием новой фазы. Продолжительность жизни зависит от природы и размера ядра (г) и толщины и природы адсорбционно-сольватного слоя (/г) ССЕ, от внешних воздействий на систему и может изменяться в широких пределах. Продолжительность жизни при фазовом переходе наименьшая для бензиновых фракций и увеличивается ио мере перехода к сырью с высокими значениями си.т межмолекулярного взаимодействия (наиример, к мазуту). [c.202]


    Формирование сольватных слоев определенной толщины и строения вокруг надмолекулярных структур оказывает существенное влияние на структурно-механические свойства нефтяных дисперсных систем. Термодинамическое обоснование их формирования было дано Гиббсом [124], допустившим, что переходный слой (межфазная граница) имеет определенную толщину и термодинамические параметры, промежуточные между значениями параметров сосуществующих фаз. Межфазная граница становится неустойчивой при натяжении порядка 10" дин/см. Для нефтяных систем неустойчивость межфазной границы структурных единиц возрастает из-за воздействия следующих факторов. [c.31]

    Под действием внешних факторов в результате диссоциации старых и образования новых межмолекулярных связей происходят взаимосогласованные изменения размеров составных ча стей сложной структурной единицы сольватного слоя и надмолекулярной структуры. Протекающие на молекулярном и надмолекулярном уровне изменения определяют новое энергетическое состояние и обуславливают соответствующие изменения макроскопических физико-химических свойств нефтяных дисперсных систем таких, как агрегативная устойчивость, структурномеханические характеристики. Для решения ряда практических задач технологии переработки нефтяных дисперсных систем необходимо действием различных факторов целенаправленно влиять на соотношение размеров составных частей сложной структурной единицы, Принимая за скорость формирования (разрушения) слоев отношение бесконечно малого приращения толщины слоя к соответствующему приращению растворяющей силы среды и используя модель последовательных реакций, в работе [112] получили систему кинетических уравнений. С их помощью построены кривые изменения радиуса надмолекулярной структуры Я и толщины сольватного слоя Я, которым соответствуют кривые изменения агрегативной устойчивости и структурно-механической прочности нефтяных дисперсных систем (рис. 6). [c.40]

    В работе [9] представлены многочисленные варианты формирования ССЕ, Например, при низких температурах в условиях кристаллизации из раствора или расплава, за счет дисперсионных взаимодействий молекулы н-алканов могут сформировать ассоциат с параллельной укладкой молекул, способный самостоятельно существовать в равновесных условиях. При этом склонность молекул к ассоциации возрастает по мере перехода к высокомолекулярным и-алканам. Ядро ССЕ, образованное молекулами высокомолекулярных -алкаиов, отличается большой упорядоченностью по сравнению с сольватным слоем. Низкомолекулярные н-алканы, обладающие большей подвижностью и меньшим поверхностным натяжением, концентрируются в адсорбционно-сольватном слое ССЕ. [c.31]

    Термодинамически неустойчивые системы могут быть до некоторых размеров частиц дисперсной фазы кинетически устойчивы. Потеря кинетической устойчивости приводит практически к разрушению коллоидной системы и превращению ее в качественно другую систему, например, грубую дисперсию. Возможно регулировать агрегативную и кинетическую устойчивость системы, воздействуя на процесс коагуляции частиц дисперсной фазы, например созданием на их поверхности защитных слоев путем введения различных добавок. Устойчивость коллоидных систем может изменятся также за счет формирования вокруг дисперсных частиц сольватных слоев из молекул растворителя. [c.24]

    Формирование сольватного слоя в нефтяных дисперсных системах можно рассматривать как процесс образования дополнительных физических узлов перераспределения межмолекулярных связей в системе. Степень структурированности системы при этом в известном смысле увеличивается, вследствие чего может одновременно [c.41]

    Изменение растворяющей способности дисперсионной среды и активности надмолекулярной структуры вследствие перехода от нерастворителя к плохому растворителю и далее к хорошему растворителю сопровождается в обратимой нефтяной дисперсной системе двумя противоположными процессами. С одной стороны, по мере перехода от нерастворителя к плохому растворителю происходит повышение степени дисперсности ассоциатов, приводящее к увеличению поверхностной активности и росту толщины сольватного слоя сложной структурной единицы с другой стороны, взаимодействие дисперсионной среды с поверхностью сольватного слоя уменьшает толщину последнего. Разность скоростей формирования и разрушения сольватных слоев определяет их толщину при воздействии данного вида растворителя и обусловлена энергией взаимодействия сольватного слоя с поверхностью надмолекулярной структуры. [c.48]

    Формирование сорбционно-сольватного слоя, находящееся в непосредственной взаимосвязи с растворяющей способностью компонентов дисперсионной среды по отношению к частицам дисперсной фазы, оказывает решающее влияние на поведение нефтяного сырья при термических воздействиях. В условиях высоких темпера- [c.130]

    Практическое постоянство температур сырьевой смеси во время отбора отдельных фракций позволяет предположить отличие механизма действия поверхностно-актив-ного вещества от нативных нефтепродуктов. По-видимому, введение в систему ПАВ приводит к сложным сорбционно-десорбционным процессам в системе и, как следствие, к формированию в ней агрегативных комбинаций с постоянно изменяющимися размерами центрального ядра и периферийного сорбционно-сольватного слоя. Подобные превращения оказывают влияние на процесс испарения компонентов сырьевой композиции и в этой связи способствуют изменению выхода дистиллятных фракций. [c.220]


    Нефтяной пек, в отличие от асфальтитов, асфальтенов и лакового битума, содержит карбены, которые не растворяются в толуоле и подобных растворителях. Очевидно, они нерастворимы и масле МП-1, что приводит к образованию в растворе нефтяного пека в масле МП-1 нерастворимой дисперсной фазы, которая может служить центром формирования структурных образований. Кроме того, они могут образовывать самостоятельную фазу с развитой цепочечной структурой, например, при температуре около 180°С в условиях приготовления раствора. Внутри этих структур может произойти объемная сорбция асфальтенов с образованием сольватного слоя сложной конфигурации. В зависимости от соотношения карбены асфальтены в нефтяном пеке может образоваться пространственная сетка из компонентов различной природы. На кривых течения раствора нефтяного пека в масле МП-1 действительно [c.257]

    Большой коэффициент удержания (иммобилизации) дисперсионной среды можно объяснить сильно развитой сольватной оболочкой, объем которой в несколько (до 16) раз больше объема ядра. Аналогичные структуры образуются и из асфальтитов, но при относительно высоких концентрациях и при меньшем развитии сольватной оболочки. Такие частицы, по-видимому, проникают в межчастичный объем агрегатов сажевых частиц, коэффициент удержания которых равен 1,5. Дальнейшее увеличе ние концентрации ВМС нефти приводит к формированию новых самостоятельных (неадсорбированных) структур, которые в дальнейшем укрупняются с образованием пространственной сетки. В состав этой сетки входят и сажевые агрегаты, создавая таким образом конгломератную пространственную структуру. В состав структуры входят не только сольватные слои, но также окклюдированная дисперсная фаза, в результате чего при 18%-ной концентрации ВМС нефти их наполненные растворы оказываются заполненными неподвижной дисперсной фазой на 80-90%. Разрушение структуры происходит постепенно по слабым связям. В первую очередь разрушаются, по-видимому, связи между агрегатами частиц сажи и в последнюю очередь — мобильные гибкие агрегаты молекул из структур ВМС нефти. [c.263]

    Для дисперсных систем, частицы в которых имеют лиофобную поверхность, образование сольватных слоев не характерно. Чтобы обеспечить их агрегативную устойчивость, применяют стабилизаторы, способствующие увеличению межфазного взаимодействия. В качестве таких стабилизаторов широко применяют ПАВ и ВМС, лиофилизирующие дисперсные системы. Молекулы ПАВ и ВМС, адсорбируясь на поверхности частиц, способствуют уменьшению поверхностного натяжения и образованию сольватного слоя. При стабилизации поверхность частиц приобретает свойства вещества-стабилизатора. Формирование пленки из ВМС происходит значительно медленнее, чем из ПАВ. Очевидно, для такой стабилизации дисперсных систем, как и при стабилизацт1и ионогенными стабилизаторами, необходимо определенное ориентирование молекул ПАВ II ВМС на межфазных поверхностях. [c.339]

    Не рассматривая вывод кинетических уравнений формирования слоев надмолекулярных структур, аналогичных уравнениям, выведенным выще для изучения кинетики формирования сольватных слоев, мы остановимся на выводах, вытекающих из этих уравнений. На рис. 13 на основании кинетических уравнений формирования (разрушения) слоев показана зависимость изменения толщины слоев от растворяющей силы дисперсионной среды (нерастворитель, плохой растворитель, хороший растворитель). РС среды, обусловливает структурно-механическую прочность н устойчивость НДС, оказывающих существенное влияние на многие процессы переработки нефти (в том числе и на процессы производст- [c.62]

    Наиболее склонны к формированию ассоциированных комплексов асфальтены и смолы. На склонность их к ассоциированию существенное влияние оказывает содержание в них ароглатизованных фрагментов, которое обычно оценивается показателем степени ароматичности. Ароматичность смол составляет 20-40%, асфальтенов 40—50%. Число конденсированных ароматических фрагментов у смоц достигает 1—4. С увеличением молекулярной массы и переходе к асфальтенам этот показатель возрастает, достигая 7,5 [22]. Наименее ароматизованные смолы преимущественно находятся в диспергированном состоянии в дисперсионной среде, а более ароматизованные, имеющие соответственно более высокие значения молекулярных масс, концентрируются в сольватном слое структурных единиц с ядром, состоящим из ассоциатов асфальтенов. При избыточном содержании асфальтенов и малой растворимости дисперсной среды (масел), они составляют в остатках дисперсную фазу. При низком содержании асфальтенов нефтяные остатки по свойствам [c.23]

    Одновременно с разложением надмолекулярной структуры ядра ССЕ претерпевает изменения и сольватная оболочка ввиду адсорбции ее компонентов на активных центрах катализатора. Частицы смол подвергаются деструктивному гидрированию, распадаясь на отдельные фрагменты молекул. Эти фрагменты частично диффундируют в дисперсионную среду и, адсорбируясь на активных центрах, подвергаются гидрированию слабых связей, деметаллизации и обессериванию. Часть деметаллизованных и обессеренных фрагментов смол могут участвовать в формировании сольватных слоев вокруг новых частиц низкомолекулярных асфальтенов. [c.69]

    Наиболее теоретически ра работаннон является модель ССЕ с ядром из поры, различные состояния которой приведены на рис. 10. Формирование адсорбционно-сольватного слоя происходит самопроизвольно за счет поверхностных сил ядра с выделением при этом обычно тепла. Поверхностные силы при физической адсорбции имеют ту же природу, что и силы межмолекулярного взаимодействия. В настоящее время, наиболее признанной, позволяющей аналитически описать -образную форму изотермы адсорбции является теория БЭТ (Брунауэр— Зммет — Теллер). По своей сути адсорбция по Ленгмюру соответствует модели ССЕ, когда / /л- О, а по Поляни — когда /г/г оо (рис. 11). Адсорбция при наличии высокодисперсных пор в адсорбенте сопровождается фазовым переходом — капиллярной конденсацией. Воздействуя различными способами на пористость твердых тел в процессе их получения и существенно изменяя условия нх применения путем варьирования давления, температуры и введения различных добавок, удается регулировать высоту межфазного слоя И на поверхности пористого тела (рис. 12). [c.77]

    На ССЕ в дисперсионной среде действуют три силы силы межмолекулярного взаимодействия (Р) и отталкивания (Ж) молекул в ядре, а также сила межмолекулярного взаимодействия в дисперсионной среде (Смма). Соотношение этих сил определяет состояние СС1 . Если Р—Ж—С м в>0, то в системе происходит формирование ядра ССЕ при одновременном снижении толщины адсорбционно-сольватного слоя. При Р—Ж—Сммв<0 происходит обратная картина — уменьшение радиуса ядра г и увеличение толщины к. Постоянное значение г к к достигается при равенстве баланса сил в системе (рис. 18). Таким образом, регулированием баланса сил представляется возможным управлять размерами составных частей ССЕ (ядра и адсорбционно-сольватного слоя). При таком подходе к НДС возникает необходимость введения новых понятий растворяющая сила — РС, диспергирующая сила — ДС, агрегирующая сила — АС. Например, РС соответствует той величине внешнего воздействия, которая [c.89]

    При формировании адсорбционно-сольватного слоя из жидкой фазы необходимо, чтобы энергия ММВ соединений, переходящих в слой, значительно превосходила энергию ММВ среды. Согласно правилу выравнивания полярностей Ребиндера, в слое концентрируется вещество, обладающее полярностью, промежуточной между полярностями веществ в ядре и дисперсионной среде раздела фаз. Так, на границе фаз асфальтены — парафины ароматические углеводороды хорошо взаимодействуют с поверхностью ядер ССЕ. Па следующих стадиях происходит рост размеров ССЕ. При достижении необходимой разности плотностей между исходной фазой и ССЕ, последние начинают перемещаться ио системе и формируют межфазный слой — поверхность разрыва — границы разделяющей фазы (подсистемы) со схожими свойствами. Поверхность разрыва представляет собой переходный слой— реальный объект, обладающий объемом. Внутри межфазного слоя в результате его разрушения происходит непрерывное изменение свойств от характерных для дисперсной системы до свойств новой фазы. В зависимости от степени искривления иоверхности ядер ССЕ различают макрогете-рогенные (плоская поверхность) и микрогетерогенные (искривленная поверхность) системы. По мере перехода от макро-гетерогенных систем к микрогетерогенным существенно увеличивается поверхность раздела и роль поверхностных явлений. При увеличении размеров коллоидных частиц происходит уменьшение их межфазной поверхности, в результате часть со- [c.123]

    Таким образом, для диспергированных частиц поверхностное натяжение на границе ядра с адсорбционно-сольватным слоем весьма велико, что усиливает роль поверхностных явлений, приводящих к формированию вокруг ядра адсорбционносольватного слоя значительной толщины. [c.127]

    Процессы формирования из молекул дисперсных частиц. X. Элиас [195J предлагает на чыва1ь. мульти.меризацией, которая может протекать с образованием обратимых ассоциатов (ассоциирование) или получением агрегатов в результате необратимых химических изменений (агрегирование). Общим для процессов мультимернзацни является фор-мирование в результате флуктуационных процессов либо в объеме нефтяной системы,, либо на поверхности (например, катализатора) ССЕ с адсорбционно-сольватным слоем, расиоложенны.м иа поверхности ядра или внутри него (на иоверхности поры). [c.152]

    Рассмотрим вкратце модель пласта, состоящего из породы (дисперсной системы) и флюида. Дисперсионной средой в породе являются неорганические вещества (силикаты, полевой шпг.т, кальцит, доломит, монтмориллонит и др.), а дисиерсной фазой — капилляры (поры). Капилляры, как разновидности ССЕ, имеют различный диаметр и соответственно обладают разной удел )-ной поверхностной энергией, т. е. энергетически неоднородн , . Компенсация внутренней поверхностной энергии приводит к формированию адсорбционно-сольватного слоя и соответственно ССЕ (пора-fфлюид). На втором этане норы насыщаются флюидами, находящимися в молекулярном состоянии, в объеме которых в виде свободно-дисперсных ССЕ могут находиться различные неоднородности. При вскрытии пласта в результаае изменения внешних воздействий (создается механическое воздействие из-за неренада давления между иородами-коллектора-ми и устьем скважины) флюиды, находящиеся в молекулярном состоянии, начинают вытесняться (происходит нефтеотдача). Однако из-за энергетической неоднородности пор и по другим причинам нефтеотдача неодинакова. Для интенсификации процесса нефтеотдачи применяют различные приемы, наиболее [c.191]

    Строение сложной структурной единицы и локальных флокул сходно с мицеллой, Однако между ними имеются существенные различия, наиболее принципиальным из которых является то, что в мицелле можно зафиксировать качество и четко определить границы ядра и некоторого переходного, граничного слоя на его поверхности, образованного, как правило, молекулами поверхностно-активных веществ. В сложной структурной единице, а тем более в локальной флокуле границы ядра, сорбционно-сольватного слоя и дисперсионной среды достаточно размыты. Дальнейшие коагуляционные взаимодействия сложных структурных единиц приводят к возникновению в системе более сложных локальных структурных образований, характеризующихся неярко выраженными центральной областью и переходным слоем. Соотношение компонентов в сложной структурной единице, возможно, оказывает решающее влияние па процессы формирования надмолекулярных структур и сольватных слоев, а следовательно, и на устойчивость и структурно-механическую прочность нефтяных дисперсных систем. [c.49]

    Проведенные ими термохимические исследования показывают, что энергия сольватации ионов мало зависит от природы растворителя и определяется в основном зарядом, радиусом и электронным строением сольватируемого иона. Молекулы воды и спирта взаимодействуют с ионами практически одинаково. При этом сольватирующие молекулы спирта обращены к иону металла атомом кислорода. Группы СНз спирта слабо взаимодействуют с ионами и не образуют водородных связей. Такая конфигурация сольватного комплекса не способствует формированию второго сольватного слоя, а также структур, где молекулы растворителя принадлежат одновременно двум ионам металла, как это наблюдается в структурах некоторых кристаллогидратов. С. И. Дракин, и М. X. Карапетьянц произвели оценку координационных чисел ионов с помощью модельных сольватов, образуемых [c.297]


Смотреть страницы где упоминается термин Сольватный слой формирование: [c.60]    [c.62]    [c.64]    [c.153]    [c.136]    [c.109]    [c.62]    [c.64]    [c.60]    [c.62]    [c.64]   
Нефтяной углерод (1980) -- [ c.13 , c.54 , c.55 , c.64 ]

Нефтяной углерод (1980) -- [ c.13 , c.54 , c.55 , c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Формирование



© 2025 chem21.info Реклама на сайте