Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродная реакция, скорость вблизи равновесия

    Скорость электродной реакции вблизи равновесия [c.409]

    Зависимость между скоростью электродной реакции и потенциалом вблизи равновесия. Ток обмена [c.409]

    Титрование с двумя металлическими индикаторными электродами. Электроды из разных материалов (Р1—Рс1, Р1—С, —А ) или электроды, отличающиеся размером поверхности, характеризуются различной скоростью установления равновесия электродной реакции. Для обратимой системы до и после точки эквивалентности разность потенциалов этих электродов мала и равновесие на них устанавливается п,иевым металлическими электродами, достаточно быстро. Вблизи точки эквивалентности при исчезающе малой концентрации одной из сопряженных форм наблюдается резкое возрастание разности потенциалов электродов вследствие резкого изменения скоростей достижения равновесия. Разность потенциалов как [c.63]


    Для обоснования механизма (6) — (8) представляет существенный интерес экспериментальное доказательство наличия в суммарном электродном процессе последующей медленной химической реакции. В случае сравнительно высокой концентрации амальгамы индия и раствора с очень низкой концентрацией ИОНОВ индия на анодной поляризационной кривой вблизи от равновесия появляется линейный участок с низким наклоном а = 2,3 ЯТ/ЗР=0,0 9 в, отвечающий последующей реакции превращения промежуточных частиц трехвалентного индия, образующихся в электрохимической стадии, в преобладающие в растворе ионы 1п + [9, 10]. Лишь при достаточном сдвиге в положительную сторону от равновесного потенциала на анодной кривой появляется второй линейный участок с обычным наклоном 6а = 0,027 в, отвечающим лимитирующей электрохимической реакции. Ток обмена, найденный путем экстраполяции второго линейного участка на равновесный потенциал, почти в три раза превышает скорость обмена, измеренную радиохимическим методом, т. е. в этих условиях скорость изотопного обмена также лимитируется не электрохимической реакцией, а более медленной последующей химической стадией. Тем не менее, как следует из вышеизложенно- [c.37]

    Кривые потенциометрического титрования и индикаторы реакции Ре" с бихроматом были рассмотрены в разд. 15-3. Потенциал бихромата (см. рис. 15-2), как и следовало ожидать, обычно увеличивается с увеличением кислотности. Однако изменения, связанные с природой кислоты, в настоящее время не могут быть объяснены. Так, потенциал бихромата в 0,1.М растворе хлорной кислоты настолько мал, что скачок потенциала едва различим [26]. Следует подчеркнуть, что скорость достижения электродного равновесия, особенно вблизи конечной точки или после нее, уменьшается с разбавлением. Тем пе менее сама по себе реакция протекает количественно и достаточно быстро даже при предельном разбавлении. Удалось определить 1 мкг хрома в 100 мл рас-, твора (около 10 моль бихромата) с точностью порядка 1%, применяя амперометрический метод обнаружения конечной точки [27, 28]. [c.361]

    Влияние адсорбционного равновесия может не приниматься во внимание только в тех случаях, когда очень велика адсорбируемость вещества и вплоть до почти полного заполнения поверхности адсорбированными частицами можно пренебречь обратным процессом десорбции. Для подобных условий Я. Вебер, Я. Коутецкий и И. Корыта [404] рассчитали влияние адсорбции поверхностно-активных веществ на скорость электродного процесса, приняв, что заполненным и незаполненным участкам поверхности отвечают свои константы скорости, так что наблюдаемая скорость электродного процесса является линейной функцией заполнения электрода. Авторы [404] определили зависимость величины мгновенного тока от времени жизни капли, концентрации поверхностно-активных веществ и констант скорости электродной реакции на занятых и свободных участках поверхности электрода. Я. Кута и И. Смол ер [405] сравнили полученные на опыте кривые I — 1, снятые в течение жизни первой капли (т. е. в условиях, при которых отсутствуют изменения приэлектродной концентрации деполяризатора, обусловленные, электролиз()м на предшествующих каплях [19]), с результатами расчета Вебера, Коутецкого и Корыты [404] и нашли, что всегда на кривых г — , снятых в присутствии адсорбирующихся веществ, наблюдается снижение тока со временем, иногда почти до I = 0. В случае сильно адсорбирующихся незаряженных веществ ход кривой I — I вплоть до последнего участка вблизи I = О почти совпадает с рассчитанным, однако на последнем участке падение тока заметно замедляется. Это обусловлено, по нашему мнению, влиянием десорбции, заметно [c.88]


    Общий принцип, который лежит в основе применения электрохимических методов для измерения скорости реакций в растворе, можно проиллюстрировать на примере полярографии. К ячейке, на катоде которой электрохимически восстанавливается некоторое вещество О О + ге К, прикладывают напряжение. Если эта электродная реакция быстрая, то ток в ячейке определяется скоростью, с которой восстанавливаемое вещество О диффундирует к катоду. Предположим, что О может участвовать в химическом равновесии типа А + В О, где А и В не восстанавливаются на катоде. Тогда О будет образовываться по прямой реакции и удаляться из раствора в результате электрохимического восстановления. Эти два процесса противоположны друг другу скорость прямой реакции влияет на поток О вблизи элек )о-да и, следовательно, может определять наблюдаемый ток. Уравнение диффузии, которая сопровождается реакцией, можно решить для идеальных условий, например для линейной или сферической диффузии в бесконечную глубину раствора реальные экспериментальные условия менее просты, но теоретические выражения для тока являются очень хорошими приближениями. (То н<е верно, конечно, когда электродная реакция является окислением.) Это лимитирование тока диффузией, которое связано с движением некоторого рода частиц к электроду, нужно, очевидно, отличать от лимитирования диффузией скорости реакции (гл. 1), когда реагирующие молекулы встречаются в результате диффузии и реагируют при каждом столкновении. [c.171]

    Преобладает гидратированная форма, однако восстанавливаться на капающем ртутном электроде способна только негидратирован-ная форма. Поэтому при наложении достаточно высокого потенциала концентрация последней вблизи электродной поверхности падает до нуля. Это вызывает сдвиг равновесия вправо и приводит к образованию новых количеств негидратированных молекул формальдегида, которые могут вступать в электродную реакцию. Однако скорость смещения равновесия мала, поэтому подвод деполяризатора в более заметной степени контролируется скоростью химической реакции, чем скоростью диффузии. В результате наблюдаемый предельный ток меньше, чем следовало бы ожидать для электродного процесса, полностью контролируемого скоростью диффузии. [c.70]

    Значения реальных потенциалов пар Ре — Ре и — Сг , найденные из кривых потенциометрического титрования, приведены в табл. 32 (см. стр. 313). Потенциал бихромата, как и следовало ожидать, обычно увеличивается с увеличением кислотности. Однако изменения, связанные с природой кислоты, в настоящее время не могут быть объяснены. Так, потенциал бихромата в 0,1 М растворе хлорной кислоты настолько мал, что скачок потенциала едва различим Необходимо дальнейшее изучение этого вопроса, особенно в связи с исследованиями окисных пленок на инертной поверхности электрода. С практической точки зрения следует подчеркнуть, что скорость достижения электродного равновесия, особенно вблизи конечной точки или после нее, уменьшается с разбавлением. Тем не менее сама по себе реакция протекает количественно и достаточно быстро даже при предельном разбавлении. Нам удалось определить 1 мг хрома в 100 мл раствора ( 10 Л1 бихромат) с точностью порядка 1%, применяя амперометрический метод об-наружения конечной точки, описанный Кольтгофом и Меем [c.485]


Смотреть страницы где упоминается термин Электродная реакция, скорость вблизи равновесия: [c.376]    [c.41]   
Теоретическая электрохимия (1959) -- [ c.409 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.408 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость между скоростью электродной реакции и потенциалом вблизи равновесия. Ток обмена

Равновесие реакций

Реакции вблизи равновесия

Скорость и равновесие

Скорость реакции вблизи равновесия

Скорость реакции равновесием

Электродная реакция, скорость

Электродные реакции



© 2025 chem21.info Реклама на сайте