Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула формальдегида

    При взаимодействии ацетилена с одной молекулой формальдегида получается с прекрасными выходами пропаргиловый спирт [c.747]

    Другая характерная особенность газофазного окисления углеводородов в области сравнительно невысоких давлений (0,03—0,25 МПа) и температур (200—400 °С) связана с появлением так называемых холодных пламен. Они проявляются в виде характерного бледно-голубого свечения, возникновение которого обычно связывают с взрывным разложением пероксидов, накапливающихся в окисляемом углеводороде, и с образованием большого количества возбужденных молекул формальдегида (НСНО ) [21]. Прн этом вероятными реакциями образования НСНО считаются следующие  [c.32]


    К этому же типу относится классическая реакция Бутлерова [56]—образование моноз из формальдегида. При этой реакции молекулы моноз образуются через альдолизацию нескольких молекул формальдегида путем последовательного переноса атомов водорода. Например, тетроза получается следующим образом  [c.623]

    Молекула формальдегид бензол нафталин [c.614]

    При конденсации ацетилена с двумя молекулами формальдегида над ацетиленидом меди образуется бутиндиол-1,4. На базе бутин-диола-1,4 получают ряд очень ценных продуктов для разнообразных синтезов. Бутиндиол-1,4 гидрированием переводят в бутандиол-1,4, из которого при дегидратации образуется тетрагидрофу- [c.748]

    При определенных условиях молекулы формальдегида могут соединяться с молекулами фенола, образуя полимер. Этот полимер, как и многие другие органические полимеры, похож на стекло и довольно хрупок. Такие полимеры называют искусственными смолами. Обычно смолы при нагревании размягчаются. Можно к ним добавить и некоторые высококипящие вещества, чтобы они размягчились еще легче. Такой размягченной смоле можно придать любую нужную форму — подобные вещества называются пластическими массами или пластиками. А вещество, которое помогает превращать смолы в пластики, называют пластификатором. [c.120]

    Хотя схема Норриша в настоящее время удовлетворительна с точки зрения кинетики, она вызывает возражения в другом отношении. Так как реакция [VI] характеризуется очень низкой энергией активации или полным отсутствием последней и, кроме того, концентрация формальдегида в смеси не превышает нескольких десятых процента, то эта реакция кажется наиболее предпочтительной, поскольку формальдегид в данном случае имеет большую вероятность столкновения, чем любая другая молекула. В частности, вероятность столкновения для молекулы формальдегида выше, чем для молекулы Н2О, которая обладает в 40 раз большей эффективностью, чем О2, в качестве третьей частицы в реакции (VI) [54]. В противном случае накопление Н2О при развитии реакции стало бы тормозить окисление метана, что в действительности не наблюдается. [c.247]

    Сейчас уместно напомнить что, как точно установлено, свечение в области холодных пламен обусловливается возбужденными молекулами формальдегида [11, 14], причем число возникающих световых квантов составляет необычайно малую долю от общего числа реагирующих углеводородных молекул [9, 48]. Для формальдегида энергия возбуждения составляет около 77 ккал. Эта величина учитывает образование возбужденного альдегида в нормальных реакционных цепях. Однако в частном случае реакция [c.256]


    Воспламенение углеводородо-воздушных смесей в связи со сложным цепным механизмом развития предпламенных процессов может быть одно- или многостадийным, в зависимости от температуры и давления среды и строения углеводородов, составляющих смесь. При некоторых условиях обычному воспламенению (горячему взрыву) смеси может предшествовать появление так называемого холодного пламени — особой промежуточной стадии окислительного процесса, сопровождающейся относительно небольшим повышением температуры (около 100° С) и слабым сине-фиолетовым свечением, различимым визуально лишь в темноте. Считают, что причиной свечения является хемилюминесценция, вызываемая возбужденными молекулами формальдегида. Холоднопламенный саморазогрев горючей смеси ясно обнаруживается при исследо ваниях в бомбе — в виде характерного скачка на индикаторной диаграмме [18]. [c.55]

    Если при окислении бензина в последних порциях смеси накапливается много перекисных соединений, то свыше некоторого критического значения происходит их взрывной распад с образованием так называемого холодного пламени . Продуктами сгорания в этом пламени являются главным образом альдегиды и СО, так что и энергия, выделяемая в холодном пламени , составляет лишь малую часть от полной теплоты сгорания топлива (5—10%) с соответственно незначительным повышением температуры. Свечение холодного пламени обязано оптическому возбуждению молекул формальдегида [c.66]

    Далее гликолевый альдегид конкурентно реагирует как метиленовый компонент с молекулой формальдегида, давая глицериновый альдегид (16), или с другой молекулой гликолевого альдегида, давая тетрозу (17)  [c.199]

    Давно уже известно, что в щелочной среде происходит конденсация молекул формальдегида друг с другом, приводящая к образованию целого ряда оксиальдегидов и оксикетонов вплоть до гексоз и выше. Этот процесс был затем видоизменен в том направлении, что были найдены условия, при которых конденсация формальдегида приводит к получению многоатомных спиртов с 2—4 атомами углерода. По одному из методов конденсацию проводили следующим образом. Раствор, содержавший 20 вес. частей формальдегида, 32 части метилового спирта, 48 частей воды и 5 частей продуктов конденсации от предыдущей операции, обрабатывали при кипячении 0,2 частями окиси свинца (для этой цели можно применять окиси или гидроокиси щелочноземельных металлов). Затем раствор кипятили в течение 6—7 час., непрерывно добавляя кашицу извести в водном этилен-гликоле, с тем чтобы pH не спускался ниже 6—6,6. Процесс проводили До тех пор, пока количество вступившего в реакцию формальдегида не достигало 80%. При этом в продуктах реакции содержался большой процент оксиальдегидов и оксикетонов с 2, 3 и 4 атомами углерода [8]. Гидрируя эти продукты, можно получить смесь соответствующих двух- и многоатомных спиртов этиленгликоля, глицерина и эритрита. Гидрирование протекает легче и более гладко, если предварительно удалить метиловый спирт и непрореагировавший формальдегид [9]. Реакции, протекающие при производстве многоатомных спиртов из формальдегида, выражаются следующей схемой  [c.297]

    Конденсация 15 молекул фенола с 14 молекулами формальдегида в присутствии небольших количеств соляной кислоты приводит к образованию новолака. При дальнейшем действии формальдегида на новолак при нагревании образуются последовательно  [c.495]

    Наконец, первичные и вторичные нитросоединения, благодаря наличию подвижных водородных атомов, находящихся под влияние.м нитрогруппы, способны присоединяться к альдегидам. Так, нитрометан соединяется с тремя молекулами формальдегида реакция протекает по уравнению  [c.177]

    Возникший алкоксильный радикал в силу своей нестойкости также распадается, выделяя молекулу формальдегида  [c.208]

    Согласно предложенной Норришем схеме, процесс инициирования заключается в молекулярном взаимодействии формальдегида с кислородом, приводящем к образованию атома кислорода, и в последующем взаимодействии последнего со второй молекулой формальдегида, в результате чего вместо бивалентного атома О образуются два монорадикала ОН и Н  [c.277]

    Если применять более сильный катализатор, например Са(0Н)2, то реакция идет дальше и образуется пентаэритрит (20), так как альдегид (19), не имеющий а-водородных атомов, способен восстанавливаться четвертой молекулой формальдегида (реакция Канниццаро)  [c.200]

    Нитрометан также реагирует с тремя молекулами формальдегида, а циклогексанон — с четырьмя молекулами формаль- [c.201]

    Ацетон может реагировать с шестью молекулами формальдегида с образованием соединения (21). [c.201]

    Из питропарафинов с 2 подвижными атомами водорода, которые могут реагировать с 2 молекулами формальдегида, образуются нитро-днаминпроизводные, которые могут восстанавливаться в триамины. [c.333]

    Результаты экспериментального исследования самовоспламенения н-гексано-воздушной смеси [21] свидетельствует о том, что в начальной стадии окисления при 320—430 °С наблюдается образование пероксидных соединений. Далее отмечается заметное возрастание температуры и давления, сопровождающееся появлением холоднопламенного свечения, максимум интенсивности которого совпадает с максимумом концентрации НСНО в газе. В спектре излучения голубого пламени помимо излучения, обусловленного возбужденными молекулами формальдегида, [c.133]


    Присадка БФК-1 также синтезируется на базе алкилфе-нола, но конденсированного с формальдегидом. По данным авторов, присадка представляет собой продукт конденсации двух молекул алкилфенола с одной молекулой формальдегида, омыленной гидратом окиси бария. [c.159]

    Как известно, фенолы и алкилфенолы легко реагируют с формальдегидом, образуя разнообразные продукты — от простых ме-тилольных и метиленовых производных до сложных полимеров. Реакция конденсации алкилфенолов с формальдегидом может протекать как в кислой, так и в щелочной среде за счет водорода в орто- и пара-пдложении. Конденсация двух молекул алкилфенола с одной молекулой формальдегида в кислой среде приводит к образованию дигидроксидифенилметана, который с избытком реагирующих веществ образует линейный полимер— новолачную смолу. Дналкилдигидроксидифенилметан является основным компонентом при синтезе барийсодержащих алкилфенольных присадок типа БФК и ИХП-101. [c.192]

    Далее продукт конденсации соединяется с новой молекулой формальдегида. причем образуется фенолоспирт более сложного строения, который снова и )исоедипяет молекулу фенола и т. д. В ре-зультаге образуется ио.лимер следующсч-о внта  [c.374]

    В случае формальдегида в реакцию альдольной конденсации вступает всегда только его карбонильная группа (если не считать альдольной конденсации между двумя молекулами формальдегида). [c.300]

    На практике это вещество не может быть выделено. В водном растворе при избытке формальдегида и в присутствии гидроокиси кальция как катализатора все три а-атома водорода ацетальдегида замещаются одновременно затем карбонильная группа ацетальдегида восстанавливается по реакции Каниццарро четвертой молекулой формальдегида, в результате чего образуется пентаэритрит С(СНгОН)4  [c.303]

    В слабощелочной среде 1 моль ацетона может присоединить от 1 до 7 молекул формальдегида [14]. Конечным продуктом такой конденсации является ангидроэннеагептитол (3,3,5,5-тетракисоксиметил-4-пиранол)  [c.321]

    Простейший из альдегидов—формальдегид—образует сложные циклические и линейные полимеры [1]. Точное строение установлено только для циклических три- и тетраоксиметиленов, которые подобны паральдегиду и метальдегиду. Порошкообразный параформ, или полиоксиметилен, представляет собой высокополимерное соединение линейной структуры. Он получается путем аддитивной полимеризации молекул формальдегида с образованием кислородных мостиков без перемещения атомов водорода (о конденсационной полимеризации формальдегида см. стр. 623)  [c.619]

    При концентрировании водных растворов формальдегида образуются другие полимерные модификации — так называемые поли-оксиметилены (или параформальдегид ). Согласно исследованиям Штаудингера, они представляют собой смеси продуктов различных ступеней полимеризации, которые удалось частично разделить. В этих полимерных соединениях отдельные формальдегидные остатки связаны друг с другом через атомы кислорода, а концы цепей насыщены элементами воды, так что в данном случае можно говорить о ди-гидратах полиоксиметиленов . Их строение отвечает формуле (III) образование этих соединений можно себе представить как ангидриза-цию гидратированных молекул формальдегида  [c.211]

    В реакции ступенчатой поли.мер иза ции небольшое количество образовавшегося метиленгликоля реагирует с молекулами формальдегида. На каждой ступени этой реакции происходит бтщепле-ние от растущей цепи атома водорода и присоединение его к молекуле формальдегида  [c.399]

    Основным дальнейшнл превращением радикала С2Н5О является окисление с получением двух молекул формальдегида и гидроксила, что, возможно, происходит путем ого распада на НСНО и СН3 с дальнейшим окислением последнего в НСНО и ОН. Нрн ннзкхсх температурах радикал СзНбО, кроме того, способен взаимодействием с нронаном давать этиловый снирт. [c.246]

    Предполагаемые пути дальнейшего окисленпя альдегидов приводят к равенству молекулярных количеств образующихся в конечном итоге Н5 0 и (СО + СО2). При этом из одной молекулы ацетальдегида получаются по две молекулы, а из одной молекулы формальдегида — по од-И01"1 молекуле СО п Н2О. Как было показано выше, именно эти соотношения были приняты автором при составленип схемы окисления пропана. Поэтому намеченная здесь для окисления альдегидов последовательность элементарных процессов не изменит результатов проверки этой схемы вычислением по ней количеств конечных продуктов. [c.253]

    Наконец вода и окись углерода получаются но одной молекуле на каждую окисленную молекулу формальдегида (реакции 12 и 13). Таким образом пятым слагаемым (НаО "") в сумме воды и третьим (СО ") в сумме окиси углерода является количество формальдегида, подвергпгееся окислению  [c.270]

    Эта реакция была изучена Л. И. Авраменко и Р. В. Лоренцо [16]. Ее константа скорости к = 1,8-10- Те-шощт мoл секг . Выше мы видели что эту реакцию Льюис и Эльбе ввели в схему окислепия этилена. Согласно этим авторам, радикал СзНз присоединяет далее кислород, получающийся перекисный радикал взаимодействием с этиленом превращается в соответствующую перекись. Последняя распадается, давая две молекулы формальдегида. Этот путь, следовательно, также приводит к образованию формальдегида и притом без присоединения свободного радикала (ОН) по месту двойной связи. На этом пути, правда, не получается метильный радикал. [c.374]

    Как метиленовый компонент формальдегид может реагировать только в исключительных случаях. Еще А. М. Бутлеровым было установлено, что при действии известковой воды на водный раствор формальдегида образуется смесь изомерных гексоз. Можно предположить, что на первой стадии реакции основание снимает в виде протона один из атомов водорода в формальдегида (принципиальная возможность отщепленпя аналогичного атома от других альдегидов обсуждалась ранее), генерируя чрезвычайно богатый энергией карбанион, который мгновенно реагирует либо с молекулой воды, регенерируя молекулу исходного формальдегида, либо с другой молекулой формальдегида как с карбонильным компонентом, образуя гликолевый альдегид  [c.199]

    По карбонильной активности формальдегид превосходит все альдегиды, как алифатические, так и ароматические, поэтому в присутствии мягких основных катализаторов он легко реагирует с алифатическими альдегидами, не давая возможности тоследним самоконденсироваться. В тех случаях, когда в реакцию вводят избыточное количество формальдегида, она не останавливается на стадии образования альдоля, в котором оставшийся в а-положении атом водорода еще подвижнее, чем в исходном альдегиде. Например, при взаимодействии формальдегида с ацетальдегидом (у которого атомы водорода в а-положении настолько подвижны, что могут быть сняты таким слабоосновным агентом, как карбонат калия) с одной молекулой ацетальдегида реагируют сразу три молекулы формальдегида, образуя тригидроксиальдегид (19)  [c.200]


Смотреть страницы где упоминается термин Молекула формальдегида: [c.415]    [c.262]    [c.407]    [c.68]    [c.614]    [c.462]    [c.276]    [c.171]    [c.14]    [c.167]    [c.248]    [c.252]    [c.369]   
Метод молекулярных орбиталей (1980) -- [ c.402 ]




ПОИСК







© 2025 chem21.info Реклама на сайте