Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Квадрупольный уровень энергии

    Когда ядро, имеющее ядерный квадрупольный момент (ядро со спиновым квантовым числом />1 см. второй раздел гл. 8 и рис. 8-1), находится в неоднородном электрическом поле, обусловленном асимметрией электронного распределения, такое квадрупольное ядро взаимодействует с электрическим полем, причем энергия взаимодействия различна для разных возможных ориентаций эллиптического квадрупольного ядра. Поскольку квадрупольный момент возникает вследствие несимметричного распределения электрического заряда в ядре, он является электрическим, а не магнитным моментом. Разрешенные ориентации момента квантованы, так же как квантуется энергия вращающегося электрона в положительном поле ядра. Ядро может иметь 21 + 1 ориентаций, которые описываются ядерным магнитным квантовым числом т, причем т может принимать значения /, /—1,. .., О,. .., —1 + 1, —Квадрупольный уровень энергии с наименьшей энергией соответствует ориентации, при которой наибольшая доля положительного заряда ядра находится ближе всего к наибольшему отрицательному заряду электронного окружения. Разность энергий при различных ориентациях не очень велика, и при комнатной температуре у группы молекул имеется распределение ориентаций. Если ядро сферическое (/=0 или /г) или если электронное окружение данного ядра является сферическим (как в С1 ), все ядерные ориентации эквивалентны и соответствующие квадрупольные состояния энергии вырождены. [c.340]


    Если ядро с квадрупольным электрическим моментом (ядерный спин 7 1 см. разд. 7.2 и рис. 7.1) находится в неоднородном электрическом поле, являющемся следствием асимметрии электронного распределения, то может возникнуть градиент электрического поля (см. ниже). Квадрупольное ядро будет взаимодействовать с этим градиентом электрического поля в различной степени в зависимости от различных возможных ориентаций эллиптического квадрупольного ядра. Поскольку квадрупольный момент возникает в результате несимметричного распределения электрического заряда в ядре, нас будет больше интересовать электрический квадрупольный момент, нежели магнитный момент. Число разрешенных ядерных ориентаций определяется ядерным магнитным квантовым числом т, которое принимает значения от -(- / до — 1 (всего 27 -Ь 1). Низший по энергии уровень квадруполя соответствует ориентации, для которой наибольшая величина положительного ядерного заряда располагается ближе всего к наибольшей плотности отрицательного заряда в электронном окружении. Разности энергий различных ориентаций не очень велики, и при комнатной температуре в группе молекул существует распределение ориентаций. Если электронное окружение ядра является сферическим (как в С1 ), то все ядерные ориентации эквивалентны и соответствующие энергетические состояния квадруполя вырождены. Если сферическим является ядро (/ = О или 1/2), то энергетических состояний квадруполя не существует. В спектроскопии ЯКР мы изучаем разности энергий невырожденных ядерных ориентаций. Эти разности энергии обычно соответствуют радиочастотному диапазону спектра, т.е. от 0,1 до 700 МГц. [c.260]

    Для ядра с / = 1 квадрупольный спектр с двумя линиями может возникнуть в случае г / О, как отмечалось выше (рис. 14.6,Б), или для ядер с л = О, находящихся в двух неэквивалентных центрах решетки. Исследование спектра образца, находящегося во внешнем магнитном поле, позволяет различить эти два варианта. В первом случае (г / 0) снова должны наблюдаться две линии, но с энергиями, отличающимися от тех, что наблюдались в отсутствие поля во втором случае каждый двукратно вырожденный уровень должен расщепляться, приводя к спектру с четырьмя линиями. [c.269]

    Все символы были определены в гл. 14, посвященной ЯКР. Для ядра нельзя определить величины из квадрупольного расщепления q и т . Не менее важен знак константы квадрупольного взаимодействия. Если уровень m, = + 3/2 соответствует высокой энергии, то знак положителен знак отрицателен, если при m = +1/2 при квантовом числе [c.293]


    Рассмотрим теперь причины возникновения тонкой структуры мессбауэровского спектра. Теория показывает, что если ядро обладает квадрупольным моментом Q и опином I, то в электростатическом окружении, симметрия которого ниже кубической, энергетический уровень ядра расщепится на несколько компонентов с энергиями  [c.256]

    Для ядра с /=1 квадрупольный спектр, состоящий из двух линий, может возникнуть в двух различных случаях во-первых, при т]= =0, как описано выше (рис. 9-2,6) во-вторых, при т) = 0 для двух ядер, находящихся в неэквивалентных положениях в решетке. Исследование спектра образца во внешнем магнитном поле позволяет различить эти две возможности. В первом случае (11 0) в магнитном поле также будут наблюдаться две линии, но с энергиями, измененными по сравнению с энергиями в отсутствие поля во втором случае каждый дважды вырожденный уровень расщепится, что приведет к появлению четырех линий. [c.344]

    Значения (У 1 [ а 11 /) для ионов редкоземельных элементов приведены в табл. 8.2. Если Т ) — волновая функция вырожденного уровня иона, то в результате квадрупольного взаимодействия уровень расщепится на подуровни, энергии которых определяются собственными значениями матрицы  [c.348]

    ДЛЯ калибровки спектрометров и схем совпадений. Энергия у-квантов определенная с высокой точностью с помощью кристаллического спектрометра и при исследовании электронов конверсии на магнитном спектрометре, составляет 0,411775 0,000007 Мэв. При анализе на магнитном спектрометре коэффициенты внутренней конверсии рассчитывали путем сопоставления площади под кривыми пиков внутренней конверсии с площадью под всей кривой -спектра. Наиболее надежным значением коэффициента внутренней конверсии на A -оболочке считают 0,028, отношение K/L принимают равным 2,9 и отношение Ь 1Ь ц/Ьш — 2,272,4/1,0. Из этих данных следует, что переход с энергией 0,412 Мэв является электрическим квадрупольным переходом Е2). Поскольку основное состояние четно-четного Hg имеет, по-видимому, характеристику О-Ь, то в соответствии с общим правилом для первых возбужденных состояний четно-четных ядер уровень с энергией 412 кэв имеет конфигурацию 2-j-. Форма спектра -частиц, испускаемых при дезактивации возбужденного состояния с энергией 0,962 Мэв, соответствует разрешенному переходу или переходу первого порядка запрещенности. По этой причине изменение спина должно составлять О или 1. Значение lg ft из уравнения (25) гл. VIH оказывается равным 7,7, что указывает, по всей вероятности, на переход первого порядка запрещенности и, следовательно, на отрицательную четность (—) Аи . Конфигурация (1—) для Аи , по-видимому, исключается, поскольку в этом случае -переходы в основное и возбужденное на 412 кэв состояния Hgi имели бы одинаковый порядок запрещения. Однако переход в основное состояние не является преобладающим и, следовательно, должен иметь большее значение lg ft, чем наблюдаемый -переход с энергией 962 кэв. Вероятные значения спина и четности для Ап составляют, таким образом, 2— или 3—. [c.428]

    Если симметрия окружения атома железа меньше кубической, то в результате взаимодействия ядерного квадрупольного момента с градиентом электрического поля, обусловленным асимметричным распределением электронной плотности, может происходить расщепление ядерного уровня с энергией 14,4 кэВ. Поскольку этому уровню соот-вествует спин /= /2, степень его вырождения равна (2/+ 1), т.е. четырем. Из-за квадрупольного взаимодействия этот уровень расщепляется на два подуровня, каждый из которых дважды вырожден. Спектр поглощения представлен двумя пиками одинаковой интенсивности (в случае поликристаллического поглощающего образца). Величина расщепления АЕц непосредственно характеризует градиент электрического поля, зависящий от локального электронного окружения и орбитального углового момента. Трехвалентное железо Ре (в высокоспиновом состоянии) имеет наполовину заполненную З -оболочку, и его орбитальный угловой момент равен нулю, поэтому величина квадрупольного расщепления для него обычно мала, < 1,0 мм/с. У двухвалентного железа Ре на следующей за наполовину заполненной З -оболочкой имеется дополнительный электрон, поэтому Ре может обладать нескомпенсированным орбитальным угловым моментом, что приводит к значительному квадрупольному расщеплению с А ц > 2,0 мм/с. [c.11]


Смотреть страницы где упоминается термин Квадрупольный уровень энергии: [c.35]    [c.35]    [c.384]    [c.385]   
Физические методы в неорганической химии (1967) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте