Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комбинационного рассеяния спектроскопия активные колебания для

    В отличие от ИК-спектров, в которых проявляются колебания, связанные с изменением дипольных моментов молекул, в спектрах КР активны те колебания, которые сопровождаются изменением поляризуемости молекулы в поле электромагнитного светового излучения. Это приводит к тому, что оба метода дополняют друг друга в определении частот колебаний в молекулах. Из спектров. КР газообразных веществ можно получить также информацию относительно вращательного движения молекул. Комбинационное рассеяние света, так же как и ИК-спектроскопия, является эффективным методом исследования строения молекул и их взаимодействия с окружающей средой. Спектры КР специфичны для каждого соединения и могут служить как для его идентификации, так и для обнаружения в смеси с другими веществами. [c.222]


    Спектроскопия комбинационного рассеяния (КР), так же как ИК Спектроскопия, имеет дело с колебательными и вращательными переходами. Однако природа возникновения спектров КР иная. Данные спектроскопии КР часто дополняют информацию, полученную при изучении ИК-спектров, что расширяет сведения о строении химических соединений. Исходя из классических представлений рассеяние света возникает вследствие колебаний молекулярного диполя, индуцированного переменным электрическим полем падающей на вещество электромагнитной волны. Правилами отбора предусматривается, что колебание активно в спектре КР, если оно сопровождается изменением поляризуемости молекулы, тогда как условием возникновения ИК-спектра поглощения является изменение собственного дипольного момента при колебании молекулы. [c.170]

    В процессе симметричного валентного колебания молекула претерпевает растяжение или сжатие, при этом электронная плотность в элементе объема изменяется, и по этой причине изменяется поляризуемость. Неизменным остается дипольный момент. Вот почему такие колебания следует наблюдать в спектре комбинационного рассеяния [см. уравнение (5.3.13)], но не в инфракрасном [см. уравнение (5.3.12)]. Для антисимметричных валентных колебаний складываются обратные соотношения. Для молекул с центром симметрии имеется правило альтернативного запрета, по которому колебание может быть активным только в инфракрасных спектрах или в спектрах комбинационного рассеяния. Из этого следует необходимость комбинирования методов инфракрасной спектроскопии и спектроскопии комбинационного рассеяния при изучении колебательных спектров молекул. [c.222]

    Если молекула имеет некоторые элементы симметрии, число отдельных колебаний, которые могут наблюдаться, будет в общем меньше ЗЛ" — 6 (или ЗЛ — 5 для линейной молекулы). Если необходимо провести полное рассмотрение эффектов симметрии, можно обратиться к одной из обычных книг но инфракрасной спектроскопии [21, 49]. Коротко же говоря, симметрия часто выражается спектрально в том, что появляются два или три вырожденных колебания, т. е. имеющих одну и ту же частоту. Другой результат наличия симметрии состоит в том, что некоторые ко.лебания не сопровождаются изменением дипольного момента и поэтому они не активны в инфракрасном спектре. Из относительно простого рассмотрения, представленного в обычных монографиях, вырождение колебаний и число колебаний, активных в инфракрасном спектре, спектре комбинационного рассеяния и полностью неактивных, можно предсказать для любой молекулы. Когда геометрия молекулы известна, могут быть составлены уравнения, связывающие силовые постоянные и массы атомов с колебательными частотами. Если известны силовые постоянные, относительно легко рассчитать колебательные частоты. Однако обратная задача расчета силовых постоянных из наблюдаемых частот намного более с.ложна. Желательно рассчитывать силовые постоянные, поскольку они характеризуют св011ства отдельных связей, тогда как колебательные частоты в силу того, что нормальные колебания охватывают все атомы молекулы, претерпевающие синхронное движение, отражают более или менее молекулярные свойства. Практически при определенных условиях некоторые частоты можно принять в качестве характеристических для отдельных связей независимо от составной части молекулы. Этот факт является основой применения инфракрасных спектров для функционального группового анализа и будет рассмотрен более полно в разд. И, 2,А. [c.325]


    В исследовании структуры как спектроскопия КР, так и ИК-спектроскопия имеют ряд слабых и сильных сторрн. Для данной структуры число ИК- и КР-активных фундаментальных колебаний можно легко предсказать на основе простого теоретикогруппового анализа [25]. Кроме того, по данным о состоянии поляризации комбинационного рассеяния возможно распознать полностью симметричные колебания. Спектры, предсказанные для соответствующих альтернативных структур, затем можно сравнить с наблюдаемыми спектрами. Для большинства простых молекул этого достаточно при определении симметрии структуры. Для более сложных больших молекул такой подход часто оказывается неприемлемым. Фундаментальные частоты большинства неорганических соединений, все атомы которых довольно тяжелые (масса превышает 15 а.е.м.), в основном находятся ниже 1200 см , за исключением соединений с особенно прочными кратными связями. Часто, когда молекула имеет лишь одинарные связи, комбинационное рассеяние наблюдается в пределах нескольких сотен обратных сантиметров от возбуждающей частоты. В таких случаях вероятность того, что два или более колебаний окажутся случайно вырожденными, велика и, следовательно, число наблюдаемых линий КР или ИК-полос окажется меньшим, чем предсказанное на основе реальной структуры молекулы. [c.16]


Смотреть страницы где упоминается термин Комбинационного рассеяния спектроскопия активные колебания для: [c.337]    [c.357]    [c.312]   
Физические методы в неорганической химии (1967) -- [ c.4 , c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Активные колебания

Комбинационное рассеяние

Спектроскопия комбинационного

Спектроскопия комбинационного рассеяни

Спектроскопия комбинационного рассеяния



© 2025 chem21.info Реклама на сайте