Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозионный элемент условия возникновения

    Такими условиями всегда характеризуется поверхность любого металла, погруженного в грунтовый электролит или имеющего на поверхности тонкую пленку влаги, поэтому степень опасности коррозионного разрушения оценивают не по возможности его возникновения, а по скорости и величине потерь металла. Другими словами, степень коррозионного разрушения металла определяется силой тока коррозии /кор- Зависимость силы тока коррозии от характеристики гальванического коррозионного элемента можно представить в следующем виде  [c.46]


    Подземные металлические конструкции в грунте подвергаются прямому коррозионному воздействию грунта. Особенно сильное разрушение наблюдается в условиях совместного воздействия грунта и блуждающих токов. Наличие в грунте влаги способствует протеканию коррозии по электрохимическому механизму и возникновению коррозионных элементов. [c.184]

    Условия возникновения коррозионного элемента. . . 134 [c.6]

    В гальваническом элементе катодом считается положительный полюс, анодом — отрицательный. При электролизе и других процессах, протекающих под действием приложенного извне постоянного тока, катодом считается отрицательный полюс, а анодом — положительный. Чтобы избежать путаницы со знаками электродов, всегда надо помнить, что на катоде протекают только восстановительные процессы, а на аноде — окислительные. Элемент может быть образован электродами из разных металлов. Для создания гальванического элемента с электродами из одного и того же металла необходимо, чтобы каждый из них находился в условиях, при которых возможно возникновение разности потенциалов между ними, — например, при различных температурах, насыщенности кислородом, концентрации растворов. Коррозионной средой может стать любой электролит морская вода, водопроводная вода, почва, растворы химических реактивов и т. п. Электроды гальванического. элемента должны быть соединены либо металлическим проводом, либо непосредственно друг с другом. В таком гальваническом или коррозионном элементе химическая энергия превращается в электрическую в результате этого и в металлической, и в электролитической частях элемента появляется электрический ток. [c.21]

    УСЛОВИЯ ВОЗНИКНОВЕНИЯ КОРРОЗИОННОГО ЭЛЕМЕНТА [c.134]

    Полная или частичная катодная защита (кормы и носа) достигается соответствующим размещением протекторов, так чтобы сохранялось желательное распределение тока на рассматриваемом участке судна. Протекторы отдают в зависимости от их размеров и действующего напряжения некоторый наибольший ток, определяемый главным образом электропроводностью воды. Наибольший ток, рассчитанный по напряжению и сопротивлению растеканию согласно формуле (7.14), на практике снижается вследствие образования защитного слоя и возникновения сопротивлений поляризации на работающих протекторах этот эффект зависит от материала протектора, от среды и от времени или от условий эксплуатации. Поэтому попятно, что указываемые изготовителями наибольшие значения тока для конкретной среды на практике могут подвергнуться изменениям. При проектировании необходимо учитывать, чтобы достигались и общий ток, и требуемая плотность защитного тока или протяженность зоны защиты. В начале эксплуатации покрытия еще имеют высокое электросопротивление и низкую степень поврежденности. В таком случае протяженность зоны защиты [по формуле (2.44)] получается большой, а требуемый защитный ток малым. В ходе эксплуатации электросопротивление покрытия снижается, вследствие чего не только возрастает требуемый защитный ток, но и уменьшается протяженность зоны защиты. Особое внимание нужно обращать и на то, что при уменьшении проводимости воды, например в портах, протяженность зоны защиты [по формуле (2.44)] уменьшается. Если временно защитный потенциал не везде будет достигнут, то большой опасности коррозии все же не возникнет, потому что катодная защита обычно подавляет действие коррозионных элементов, О зависимости скорости коррозии (по съему материала) от потенциала имеются данные на рис, 2,9, [c.360]


    Зарубежные специалисты считают [45], что более 50 % коррозионных повреждений техники, эксплуатирующейся в природных условиях, связаны в той или иной степени с воздействием микроорганизмов. Стимулирование электрохимической коррозии происходит в результате появления концентрационных элементов на поверхности конструкций в результате накопления продуктов жизнедеятельности микроорганизмов, повышающих агрессивность среды. При этом происходят разрушение защитных пассивных пленок на металле и деполяризация катодного и (или) анодного процессов. Изменение ЭДС коррозионных элементов приводит к локализации процесса коррозии. Стимулированию локальной коррозии также способствует неравномерность распределения колоний микроорганизмов, образование сероводорода, сульфидов, ионов гидроксония, гидрат-ионов и т. п. в условиях, казалось бы, исключающих появление этих соединений. Постоянная изменчивость микроорганизмов, миграция катодных и анодных фаз, сочетания аэробных и анаэробных процессов приводят к появлению значительных коррозионных эффектов и создают предпосылки к возникновению отказов. Участие в процессе коррозии микроорганизмов снимает известные ограничения условий его протекания по [c.54]

    Реакцией несущих элементов конструкций и деталей машин на суммарные статические и динамические нагрузки, воздействие физических полей (линейных и нелинейных) и коррозионных сред является возникновение не только полей напряжений и деформаций, но и полей повреждений. В зонах концентрации напряжений местные напряжения и деформации имеют повышенные значения, а сами процессы повреждения материала протекают более интенсивно, приводя к возникновению разрушения. В зависимости от условий нагружения и среды реализуются различные механизмы накопления статических и динамических повреждений и разрушения. Среди этих механизмов наиболее опасными являются те, которые приводят к катастрофическому (лавинообразному) разрушению, например, в условиях коррозионного растрескивания, динамического и длительного статического нагружения, контактного взаимодействия, неустойчивого распространения трещины при статическом кратковременном нагружении. Выявление и анализ физических особенностей механизмов появления и накопления повреждений в материале играют весьма важную роль в изучении механики разрушения и катастроф при формировании физических критериев достижения предельного состояния. [c.121]

    Правильный выбор конструкции отдельных элементов аппаратов, машин и различных сооружений имеет большое значение с точки зрения возможности возникновения или усиления коррозии. Неудачные конструкции обусловливают появление внутренних напряжений, тепловой неоднородности (местные перегревы), контакт разнородных металлов, наличие зазоров, щелей, неплотностей, застойных зон и др. Все эти факторы способствуют возникновению очагов коррозии или их развитию. Следовательно, еще на стадии проектирования необходимы такие решения, которые исключали бы действие перечисленных факторов, приводящих к коррозионному разрушению конструкции. До настоящего времени нет единых нормативов или установленных требований к проектируемой аппаратуре, которые обязывали бы принимать то или иное конструктивное решение в зависимости от коррозионных условий эксплуатации оборудования. Имеется только указание в РТМ 42—62, предусматривающее увеличение расчетной толщины стенок сосудов и аппаратов ( на 1 мм) для компенсации коррозии под влиянием агрессивной рабочей среды. [c.51]

    Возникновение на поверхности металла коррозионных элементов должно рассматриваться как одно из непременных условий [c.13]

    Коррозия может начаться в конструкциях, в которых возможен застой и накапливание жидкости в пазах и углублениях, а также образование неравномерного слоя осадка на стенках аппаратов. В этом случае создаются условия для возникновения коррозионных элементов и протекания процесса коррозии. [c.30]

    Условия возникновения электрохимической гетерогенности и образования коррозионных пар на поверхности металла были в основном установлены и изучены на примере коррозии металла в водных электролитах [3, 4, 7, 8]. Основные закономерности возникновения и функционирования локальных элементов в принципе остаются действительными и применительно к развитию коррозии во влажной почве, поскольку здесь процессы коррозии имеют также электрохимическую природу. [c.126]

    Особенности работы коррозионного элемента в условиях возможности возникновения пассивности [c.193]

    Количественное определение степени пассивного состояния металлов и установление общих закономерностей работы коррозионных элементов в условиях возможности возникновения пассивного состояния металла. [c.5]

    ОСОБЕННОСТИ РАБОТЫ КОРРОЗИОННОГО ЭЛЕМЕНТА В УСЛОВИЯХ ВОЗМОЖНОСТИ ВОЗНИКНОВЕНИЯ ПАССИВНОСТИ [c.313]

    До сих пор мы ограничивались рассмотрением электрохимического и коррозионного поведения металлов лишь в щелях. На самом же деле металл, находящийся в щели, всегда находится в контакте с металлом, свободно омываемым электролитом. Последнее существенно изменяет характер процесса [38]. Поскольку потенциал металлов в щелях, как было показано на рис. 88, заметно отличается от потенциала металла, к которому имеется свободный доступ кислорода или другого пассива-тора, создаются благоприятные условия для возникновения макроэлементов, в которых анодами является металл, находящийся в зазоре. Приведенные на рис. 91 кривые, характеризующие изменение тока во-времени, возникающего между электродом, свободно омываемым электролитом, и электродом, находящимся в щели, показывают, что на различных металлах в таких условиях функционируют довольно мощные элементы. [c.220]


    Детали и узлы многих машин работают в условиях повышенных статических, динамических и вибрационных нагрузок. Некоторые элементы конструкции испытывают периодические перегрузки (например, при грубых посадках самолетов, повышении температуры в двигателе при форсаже, тепловых ударах при запуске и остановке двигателя и т.д.), работают в агрессивной среде и подвергаются коррозионному и эрозионному воздействию. Все это приводит к возникновению дефектов в элементах конструкций, которые могут явиться причиной усталостного их разрушения. [c.41]

    Те же исследователи проверили влияние содержания углерода и титана на склонность стали к ножевой коррозии и установили, что высокое содержание углерода не является достаточным условием для возникновения чувствительности к ножевой коррозии. Например, нестабилизированные стали, содержание углерода в которых достаточно высоко, не склонны к ножевой коррозии. Коррозионное разрушение этих сталей происходит в зоне термического влияния, удаленной от поверхности сплавления. Только при совместном содержании углерода и стабилизирующего элемента, в данном случае титана, появляется склонность к ножевой коррозии. [c.44]

    Среди факторов почвенной коррозии следует отметить структурную неоднородность почв, вызывающую появление коррозионных элементов на металле. Важность такого фактора, как кислородная проницаемость почвы, ул е рассмотрена. Следует, однако, иметь в виду, что уменьшение кислородной проницаемости почвы, с одной стороны, способствует возникновению анаэробных условий и развитию деятельности сульфатредуци- [c.43]

    Котлы-утилизаторы отходящей теплопил. Явление коррозионного растрескивания аустенитной хромоникелевой стали кратко упоминалось в 5.4.2. В межтрубном пространстве котлои-утилизаторов отходящей теплоты и в некоторых специальных видах охладителей предпочтительнее осуществлять циркуляцию воды, тогда как в случае использования горячей жидкости с коррозионным воздействием трубы и трубные доски необходимо изготавливать из нержавеющей стали. Если температура входящей жидкости превышает те.мпературу, необходимую для испарения воды, находящейся в пространстве между трубой и трубной доской, может произойти растрескивание элементов конструкций, изготовляемых из аустенитной хромоникелевой стали. Температура испарения примерно равна температуре насыщения пара при рабочем давлении поэтому аустенитную нержавеющую сталь можно использовать при условии, что входная температура горячего газа ниже температуры насыщения на некоторую величину, выбранную из условий безопасности установки, скажем на 30 °С. В противном случае для изготовления трубного пучка могут потребоваться ферро- или ферроаустенитные стали. Однако использование этих сталей может вызвать ряд сложностей, связанных со сваркой труб доски с кожухом вследствие возникновения хрупкости в сварном шве. Для данных условий экономически более выгодно использовать сплавы с более высоким содержанием никеля. При хорошей химической обработке воды сварка труб с задней стороной трубной доски является возможным решением проблемы. Если вода неудовлетворительного качества, то иа наружной поверхности труб может происходить отложение солей, вызывающих коррозионное растрескивание. [c.319]

    Высокая концентрация ионов С1 и низкое значение pH поддерживает питтинг в активном состоянии. В то же время высокая плотность растворов, содержащих продукты коррозии, обусловливает их вытекание из питтинга под действием силы тяжести. При контакте этих продуктов с поверхностью сплава пассивность в этих местах нарушается. Это явление объясняет часто наблюдаемую на практике форму питтинга, удлиненную в направлении действия силы тяжести (течения продуктов коррозии). На пластинке нержавеющей стали 18-8 после выдержки в морской воде в течение 1 года была обнаружена узкая бороздка, протянувшаяся на 6,35 см от начальной точки (рис. 18, 5, а). Возникновение коррозионных разрушений такого типа было воспроизведено в лабораторных условиях [43]. По поверхности образца стали 18-8, полностью погруженного в раствор Fe la и немного отклоненного от вертикали, постоянно пропускали слабую струю концентрированного раствора Fe lj. Через несколько часов под струей раствора Fe la образовывалась глубокая канавка (рис. 18.5, Ь). На поверхности железа подобная канавка не образуется, так как на нем не возникает активно-пассивный элемент. [c.313]

    Коррозионная стойкость стали в атмосферных условиях резко возрастает при введении даже незначительного количества легирующих элементов, поэтому применение низколегированных сталей в качестве строительных и конструкщюнных материалов, эксплуатируемых в атмосферных условиях, экономически выгодно долговечность сооружений может быть повышена в 2-3 раза без дополнительной защиты в условиях промышленной, городской и сельской атмосферы. Защитное действие легирующих элементов в атмосферостойких низколегированных сталях основано на том, что легирующие элементы либо их соединения тормозят обычные фазовые превращения в ржавчине (см. рис. 1), и поэтому слой ржавчины на атмосферостойкой стали уплотняется. Считается также, что наряду с усилением защитных свойств слоя продуктов коррозии основной причиной положительного влияния меди является возникновение анодной пассивности стали за счет усиления эффективности катодной реакщш. Действие меди как эффективного катода подтверждается тем, что ее положительное влияние наблюдается уже в начальных стадиях коррозии, когда на поверхности стали еще не образовался слой видимых продуктов коррозии. [c.12]

    ГО происхождения наблюдались в местах аварки патрубков [20]. Авария американского реактора 8Ь-1 в эксплуатации произошла в связи с быстрым наращиванием мощности при пуске реактора, вызвавщим существенное повышение давления в корпусе [21], Это привело к срезу отводящих и подводящих патрубков, пластической деформации корпуса, характеризуемой увеличением диаметра на 30—100 мм. Циклическое нагружение элементов реакторов механическими, тепловыми и гидродинамическими усилиями может вызвать образование трещин в антикоррозионных наплавках [21], узлах крепления внутрикорпусных устройств (ВКУ) [9]. Стоимость программ восстановительных работ после таких крупных аварий, как авария на АЭС Три-майл-Айленд (США, 1979 г.), оценивается примерно в 1 млрд долларов, а время выполнения таких работ достигает не менее 5 лет [19]. Обобщение данных о повреждениях несущих элементов атомных энергетических установок показывает [22], что около 40% обнаруженных трещин связано с циклическими повреждениями, около 30% — с коррозионно-механическими, около 17% - с начальной технологической дефектностью. Это свидетельствует о большом числе причин и источников возникновения повреждений, связанных со значительной сложностью как самих конструкций реакторов и технологических процессов при их изготовлении, так и условий эксплуатации. [c.12]

    Можно также считать, что коррозия — фактор, ускоряющий возникновение и распространение усталостных трещин. Необходимо подчеркнуть, что влияние коррозии на прочность кон- -струкции не исчерпывается общим уменьшением поперечного сечения элементов, поскольку не менее существенны процессы локальной коррозии, как, например, питинговой или межкри-сталлитной, так как образовавшиеся в этих условиях язвины или питинги становятся концентраторами напряжений. Питинги часто возникают в местах медленного течения среды или в застойных зонах, что характерно для режима остановки оборудования, а также для условий контакта с умеренно агрессивной средой, когда коррозионный процесс происходит в нескольких локальных зонах, где коррозионная стойкость материала наименьшая. [c.435]

    В зависимости от типа сплава, технологии производства и характера примесей межкристаллитные границы более или менее отличаются от внутренней части зерен как составом, так и гетерогенной структурой с высокой степенью дисперсности. Эти особенности межкристаллитных границ уже сами по себе меняют условия проте-каиия коррозии. Межкристаллитная внутренняя адсорбция может иметь как положительное, так и отрицательное значение (но часто решающее) для возникновения склонности к межкристаллитной коррозии. Межкристаллитная внутренняя адсорбция углерода по границам зерен нержавеющей стали ведет к быстрому выделению карбидов хрома при нагреве в области критических температур, и этим обедняет границы зерен хромом (см. гл. 3.4.1). Обогащение границ зерен углеродом было подтверждено у стали Х18Н12, как авторадиографическим измерением с использованием радиоактивного углерода (С 4) [28, 44], так и точным рентгенографическим анализом изменений параметров решетки аустенита [6]. Однако существуют примеси, которые также адсорбируются на границах зерен, но при этом исключают неблагоприятное влияние углерода. Принципиально можно уменьшить склонность к межкристаллитной коррозии прибавлением таких примесей, которые уже при отпосите дао малом их содержании в сплаве существенно повышают коррозионную стойкость или способность к пассивации. Тот факт, что поверхности излома и карбиды МеазСв, выпадающие по границам зерен легированной молибденом стали, обогащены этим элементом [6], подтверждает приведенное выше высказывание и позволяет объяснить благоприятное влияние молибдена на снижение склонности нержавеющих сталей к межкристаллитной коррозии. Кроме углерода, существуют еще другие примеси, которые своей внутренней адсорбцией на границах кристаллов ускоряют межкристаллитную коррозию. Этим примесям (например, никелю) должно быть уделено особое внимание. Если их присутствие необходимо для сохранения [c.44]

    В термобиметаллах возможно возникновение коррозионного разрушения от циклических нагрузок. Поскольку готовый термобиметаллический элемент при измерении температуры вследствие разности ТКЛР составляющих изгибается, то при этом возникают внутренние напряжения. При охлаждении полосы платина изгибается в противоположную сторону. Таким образом, при наличии растягивающих усилий повторно-переменных нагрузок, а также коррозионной среды на поверхности металла возможно образование трещин. Этот вид коррозии наблюдают на нагартовзнной латуни Л62 в аммиачной среде, а на сплавах системы Ре—Сг—N1 —в хлоридах. Для защиты от коррозии готового термобиметаллического элемента в зависимости от условий работы применяют различные металлические и лакокрасочные покрытия, а также покрытия эмалями и смазками. [c.173]

    При обычных условиях коррозия металлов, как правило, вызывается действием воды в жидком или парообразном состоянии и кислорода, причем в присутствии в воде кислот или оснований она может резко усилиться. Механизм коррозионного действия в большинстве случаев можно объяснить на основе электрохимической теории, в качестве одного из основных положений которой постулируется, что коррозия вызывается возникновением на поверхности металла разности потенциалов ионизации. С межные участки (например, соприкасающиеся монокристаллы различных металлических фаз поверхности), различающиеся по своему химическому составу, в растворе, проводящем электрический ток, образуют микрогальванические элементы, и та часть металла, которая легче теряет электроны, начнет растворяться.  [c.178]

    Данные, лолученные при статиетичееком изучении дейсгаиа ингибиторов, дают возможность объяснить образование не затронутых коррозией кругов и коррозионных колец вокруг них на горизонтальной поверхности железа или цинка (стр. 238). Представим металлическую поверхность, погруженную в соляной раствор при условии равномерного притока кислорода. В среднем общее количество соли металла, образовавшейся на уязвимых точках, будет точно эквивалентно общему количеству щелочи, образовав шейся на части поверхности, не затронутой коррозией. Если уязвимые места очень малы, многочисленны и распределены равномерно, то щелочь будет взаимодействовать с солью металла, давая гидроокись металла в физическом контакте с поверхностью, и коррозия таким образом самотормозится. Но если на поверхности окажутся несколько изолированных, сильно уязвимых мест, то соль металла будет образовываться в этих местах в большем избытке сравнительно с щелочью, и вследствие этого осаждение будет происходить на некотором расстоянии от места образования в таком случае коррозия будет прогрессировать. В начальных стадиях ожидаемый ток на ка-ЖДО.М элементе поверхности всегда будет равен нулю, так как имеется одинаковая возможность, будет ли этот элемент анодом или катодом. Но для каждого элемента имеется небольшая вероятность того, что ток приобретает некоторое анодное значение, так что коррозия уже не будет тормозиться сама собой. Положим вероятность того, что это случится на некотором элементе с1А, когда еще ничего не известно о коррозии или иммунитете соседних мест, будет Р(1А. Примем, однако, что если в данном пункте (который может быть назван центром ) коррозия определенно развивается, и маленькая, но конечных размеров площадь освобождается ог ее первоначальной пленки, то вероятность образования точек вокруг этого места сразу нарушается. Ожидаемый ток у поверхности, очень близкой к центру, теперь уже не будет равен нулю, но станет отрицательным, так как большая часть анодного тока, которая сконцентрировалась бы на чрезвычайно малых, слабых точках в пределах этой площади будет теперь сосредоточена на большом обнаженном пространстве коррозионного центра. На элементы, расположенные далее от центра, это повлияет в меньшей степени, как это следует из рассмотрения сопротивления, и следовательно, вероятность образования новых точек воздействия, число которых непосредственно за центром практически равно нулю, повышается, как только мы удаляемся от центра. Закон увеличения вероятности возникновения коррозии с расстоянием не может быть установлен с полной определенностью, но в отсутствии других нарушений увеличение будет одинаково для всех точек. [c.443]

    Для получения количественных данных о продолжительности сохранения влаги на поверхности образцов можно использовать установку, изображенную на рис. 227. При возникновении на поверхности модели пленок влаги начинают работать микрокоррозионные элементы и электроизмерительный прибор регистрирует ток. При высыхании пленки влаги коррозионный ток падает до очень малой величины, соответствующей условиям работы микрокоррозионных элементов под адсорбционными пленками влаги. При непрерывной работе модели в атмосфере на ленте самопишущего прибора регистрируется число случаев выпадения осадков и продолжительность сохранения влаги на поверхности испытываемых образцов. [c.399]


Смотреть страницы где упоминается термин Коррозионный элемент условия возникновения: [c.84]    [c.102]    [c.27]    [c.43]   
Катодная защита от коррозии (1984) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионный элемент

Особенности работы коррозионного элемента в условиях возможности возникновения пассивности

возникновение



© 2025 chem21.info Реклама на сайте