Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликоген ферменты метаболизма

    Крахмал первоначально подвергается воздействию находящегося в слюне фермента, птиалина, но в основном гидролиз крахмала происходит в тонком кишечнике, где под действием ферментов поджелудочной железы и других высокоактивных ферментов крахмал превращается в глюкозу. Часть простых сахаров, к числу которых относится глюкоза, переносится кровью в печень, где происходит их отложение в составе гликогена. Другая часть сахаров поступает непосредственно в общий кровоток, где они сгорают с выделением энергии, превращаются в жиры либо накапливаются в мышцах в виде гликогена. Гликоген может высвобождаться при первой же необходимости и служит источником энергии. Метаболизм углеводов регулируется таким гормоном, как инсулин. Механизмы превращения углеводов в СО2 и Н2О очень сложны и не будут рассматриваться в данной книге. [c.486]


    Ряд других, довольно редко встречающихся наследственных заболеваний также вызван накоплением гликогена, которое обусловлено по существу той же причиной, а именно сильным ингибированием процесса расщепления гликогена в гликолитическом метаболизме, что в свою очередь связано с недостаточной активностью какого-нибудь из ферментов фос-фофруктокиназы, киназы фосфорилазы печени, фосфорилазы печени или глюкозо-6-фосфатазы печени. В последнем случае накопление гликогена объясняется тем, что его запасы не поступают из печени в кровь в виде свободной глюкозы. При одном из таких заболеваний имеет место нехватка ветвящего фермента, участвующего в синтезе гликогена, в результате чего образующийся гликоген содержит необычно длинные неразветвленные ветви. Другая же форма заболевания связана с недостатком фермента, ответственного за расщепление гликогена в точках ветвления, в результате чего легко из печени может удаляться лишь ограниченное количество глюкозы, образующейся в результате расщепления только наружных неразветвленных ветвей гликогена. [c.510]

    Нуклеотиды являются регуляторами метаболизма. Циклический АМР-универсальный посредник действия многих гормонов, встречающийся повсеместно. Ковалентные модификации, производимые молекулами АТР, изменяют активность некоторых ферментов в качестве примера можно назвать фосфорилирование гликоген-синтезы и аденилирование глутамин-синтетазы. [c.255]

    Рентгенокристаллографические исследования а- и Ь-форм гликоген-фосфорилазы значительно облегчили изучение каталитических и регуляторных механизмов этого ключевого фермента метаболизма. 841 аминокислотный остаток мономерной субъединицы компактно упакованы в три структурных домена (рис. 16.6) аминокон- [c.124]

    Ковалентная модификация. Некоторые регуляторные ферменты контролируются не только аллостерически, но и с помощью ковалентной модификации. Например, фосфорилирование повышает каталитическую активность гликоген-фосфорилазы и снижает активность гликоген-синтазы. Эти ковалентные модификации катализируются особыми ферментами. Еще один пример - глутамин-синтетаза, активность которой снижается при ковалентном присоединении остатка АМР. И в этом случае присоединение и отщепление модифицирующей группы катализируется специальными ферментами. Зачем же используется ковалентная модификация наряду с нековалентной аллостерической регуляцией Ковалентная модификация ключевых ферментов метаболизма - заключительная стадия каскада реакций, усиливающего сигнал. Благодаря этому метаболический путь может быстро включаться и выключаться под действием очень слабых сигналов, как это показано на примере стимулирующего влияния адреналина на расщепление гликогена. [c.283]


    Слиянию генов могла принадлежать важная роль в процессе эволюции основных метаболических путей. Энергетический путь метаболизма каждого из перечисленных ниже ферментов определился, вероятно, в результате объединения копии изначального (ди)нук-леотидсвязывающего домена с одним или большим числом других доменов, отличных от первого фосфоглицераткиназа [235, 310, 311], дегидрогеназы, специфичные соответственно к глицеральдегид-3-фосфату, лактату, малату и алкоголю [91], и гликоген-фосфорилаза [236]. Как обсуждалось в разд. 5.4, (ди)нуклеотидсвязывающий домен представляет N-концевую часть первых четырех ферментов, тогда как в алкогольдегидрогеназе он расположен в С-концевой части, а в фосфорилазе — в середине цепи. Это указывает на то, что ограничения в пространственном расположении доменов не вызывали затруднений при их использовании в качестве составных блоков для построения самых сложных белков в процессе эволюции. [c.229]

    Механизм влияния инсулина на утилизацию глюкозы включает в себя и другой анаболический процесс. В печени и в мышцах инсулин стимулирует превращение глюкозы в глюкозо-6-фосфат, который затем подвергается изомеризации в глюкозо-1-фосфат и в таком виде включается в гликоген под действием фермента гликогенсинтазы (ее активность также стимулируется инсулином). Это действие имеет двойственный и непрямой характер. Инсулин снижает внутриклеточный уровень сАМР, активируя фосфодиэстеразу. Поскольку сАМР-зависимое фосфорилирование инактивирует гликогенсинтазу, при низком уровне этого нуклеотида фермент находится в активной форме. Инсулин активирует и фосфатазу, катализирующую дефосфорилирование гликогенсинтазы, тем самым активируя этот фермент. И наконец, инсулин ингибирует фосфорилазу с помощью механизма, работающего с участием с АМР и фосфатазы, как описано выше. В результате высвобождение глюкозы из гликогена снижается. Таким образом, влияние инсулина на метаболизм гликогена также является анаболическим. [c.256]

    Гибсон, 1948 [1099]) (25080). В этом случае поврежденным ферментом является МАВН - зависимая метгемоглобин-редуктаза. Первая попытка систематического изучения группы заболеваний человека, связанных с дефектами метаболизма, бьша предпринята в 1951 году. При исследовании болезни накопления гликогена [1044] супруги Кори показали, что в восьми из десяти случаев патологического состояния, которое диагностировалось как болезнь Гирке (23220), структура гликогена печени представляла собой нормальный вариант, а в двух случаях была явно нарушена. Было также очевидно, что гликоген печени, накапливаясь в избытке, не может быть непосредственно превращен в сахар, поскольку у больных проявляется тенденция к гипогликемии. Для расщепления гликогена с образованием глюкозы в печени необходимы многие ферменты. Два из них-амило-1,6-глюкозидаза и глюкозо-6-фосфатаза-были выбраны для изучения как возможные дефектные элементы ферментной системы. В гомогенатах печени при различных значениях pH было измерено освобождение фосфата из глюкозо-6-фосфата. Результаты представлены на рис. [c.10]

    Главные ферменты, контролирующие метаболизм гликогена,— гликогенфосфорилаза и гликоген-синтаза—регулируются сложной серией реакщ1Й, в которых используются как аллостерические механизмы (см. с. 104), так и ковалентная модифика-Щ1Я путем фосфорилирования и дефосфорилирования фермента (см. с. 108). [c.192]

    Для гликогена мозга характерно наличие большой разветвленности за счет аФ (1-6) ГЛЮКОЗЫ, причем в центре молекулы гликогена имеются ветвления из 3—4 глюкозных остатков, а боковые цепи имеют 6—8 глюкозных остатков. При большом ветвлении гликоген легко подвергается ферментативному расщеплению, так как чем больше свободных концов в молекуле гликогена, тем легче они подвергаются воздействию ферментов и тем быстрее происходит метаболизм гликогена. Таким образом, н1гге1гснвная обновляемость гликогена мозга непосредственно связана с его своеобразным строением, точнее разветвленностью. (Е. Л. Розенфельд. Механизм регуляции действия ферментов, участвующих в обмене гликогена.— В кн. Химия и биохн-мня углеводов. М., 1969, с. 195—204). [c.264]

    Биосинтез и расщепление почти всегда осуществляются различными путями. Например, путь синтеза жирных кислот отличается от пути их расщепления. Точно так же гликоген синтезируется и расщепляется в результате различных последовательностей реакций. Благодаря такому разделению пути синтеза и расщепления постоянно оказываются термодинамически выгодными. Чтобы какой-либо путь биосинтеза был экзергоническим, он должен быть сопряжен с гидролизом достаточного количества молекул АТР. Например, на превращение пирувата в глюкозу в процессе глюконеогенеза затрачивается на четыре высокоэнергетические связи Р больше, чем образуется в процессе превращения глюкозы в пируват в ходе гликолиза. Эти четыре дополнительные связи Р обусловливают экзерго-ничность глюконеогенеза при любых существующих в клетке условиях. Принципиально важная особенность метаболических путей состоит в том, что их скорость определяется не законом действующих масс, а активностью ключевых ферментов. Разделение путей биосинтеза и расщепления имеет особенно важное значение для эффективной регуляции метаболизма. [c.282]



Смотреть страницы где упоминается термин Гликоген ферменты метаболизма: [c.390]    [c.323]    [c.645]    [c.12]    [c.352]    [c.285]   
Химия и биохимия углеводов (1978) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Гликоген

Гликоген метаболизм

Гликоген ферменты, участвующие в метаболизме

Метаболизм

Ферменты метаболизма

Ферменты, участвующие в метаболизме крахмала-гликогена



© 2025 chem21.info Реклама на сайте