Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликоген метаболизм

Рис. 3.15. Метаболизм ФАО в аэробных и анаэробных условиях. ПНО — полимерные насыщенные оксикислоты, Гл — гликоген, ПФ — полифосфаты, НАс — ацетат. Рис. 3.15. Метаболизм ФАО в аэробных и <a href="/info/69500">анаэробных условиях</a>. ПНО — <a href="/info/1847388">полимерные насыщенные</a> оксикислоты, Гл — гликоген, ПФ — полифосфаты, НАс — ацетат.

    Глюкогенные аминокислоты — аминокислоты, углеродная цепь которых в процессе метаболизма может быть превращена в глюкозу или гликоген. [c.83]

    Крахмал первоначально подвергается воздействию находящегося в слюне фермента, птиалина, но в основном гидролиз крахмала происходит в тонком кишечнике, где под действием ферментов поджелудочной железы и других высокоактивных ферментов крахмал превращается в глюкозу. Часть простых сахаров, к числу которых относится глюкоза, переносится кровью в печень, где происходит их отложение в составе гликогена. Другая часть сахаров поступает непосредственно в общий кровоток, где они сгорают с выделением энергии, превращаются в жиры либо накапливаются в мышцах в виде гликогена. Гликоген может высвобождаться при первой же необходимости и служит источником энергии. Метаболизм углеводов регулируется таким гормоном, как инсулин. Механизмы превращения углеводов в СО2 и Н2О очень сложны и не будут рассматриваться в данной книге. [c.486]

    На приведенном рис. 27.1 отчетливо видна метаболическая специализация отдельных органов, которая определяется в первую очередь наличием в них специфической метаболической регуляции. Метаболизм в мозгу, мышцах, жировой ткани и печени сильно различается. Мышцы, например, использ тот в качестве источника энергии глюкозу, жирные кислоты, кетоновые тела и синтезируют гликоген в качестве энергетического резерва, в то время как мозговая ткань в качестве энергетического источника использует исключительно глюкозу. Специализация жировой ткани — синтез, запасание и мобилизация триацилглицеролов. Исключительно велика роль печени в обмене практически всех органов. Это мобилизация гликогена и глюконеогенез, которые обескровь [c.441]

    Мышцы. Основные источники энергии в мышцах-глюкоза, жирные кислоты и кетоновые тела. Мышцы отличаются от мозга большим запасом гликогена (1200 ккал). Около трех четвертых всего гликогена организма находится в мышцах (табл. 23.1). Содержание гликогена в мышцах после еды может достигать 1%. Этот гликоген легко превращается в глюкозо-б-фосфат для последующего использования в мышечных клетках. В мышцах, как и в мозгу, глюкозо-б-фосфатазы нет, в связи с чем экспорта глюкозы из этих клеток не происходит. Вместо этого мышцы задерживают глюкозу, которую они предпочитают другим источникам энергии в периоды повышенной активности, В активно сокращающихся скелетных мышцах скорость гликолиза сильно превосходит скорость цикла трикарбоновых кислот. Пируват, образующийся в этих условиях, большей частью восстанавливается до лактата. Лактат переходит в печень, где он превращается в глюкозу. В результате этих превращений, называемых циклом Кори (разд, 15.21), часть метаболических отходов мышц перемещается в печень. Кроме того, в активно работающей мышце образуется большое количество аланина в результате трансаминирования пирувата. Подобно лактату, аланин может превращаться в печени в глюкозу. Совершенно иначе организован метаболизм покоящейся мышцы. В ней основным источником энергии служат жирные кислоты. Источником энергии для сердечной мышцы могут служить также кетоновые тела. Более того, сердечная мыш ца предпочитает ацетоацетат глюкозе. [c.289]


    Примерно 1,5—2 10 лет назад парциальное давление Оа в атмосфере достигло 0,02—0,207о современного уровня. При этом начал возникать аэробный метаболизм, дыхание. При клеточном дыхании происходит ряд взаимосвязанных процессов синтеза биологических молекул, необходимых для жизни, и зарядка АТФ (окислительное фосфорилирование). Молекулы пищевых веществ сгорают , окисляются до СОг и НаО, причем Оа служит конечным акцептором водорода. Освобождение химической энергии из пищи происходит, грубо говоря, в трех фазах. Первая состоит в расщеплении макромолекул и молекул жиров. Из белков получаются аминокислоты, из углеводов (крахмал, гликоген)—гексо-зы, из жиров — глицерин и жирные кислоты. Из этих веществ [c.53]

    Ряд других, довольно редко встречающихся наследственных заболеваний также вызван накоплением гликогена, которое обусловлено по существу той же причиной, а именно сильным ингибированием процесса расщепления гликогена в гликолитическом метаболизме, что в свою очередь связано с недостаточной активностью какого-нибудь из ферментов фос-фофруктокиназы, киназы фосфорилазы печени, фосфорилазы печени или глюкозо-6-фосфатазы печени. В последнем случае накопление гликогена объясняется тем, что его запасы не поступают из печени в кровь в виде свободной глюкозы. При одном из таких заболеваний имеет место нехватка ветвящего фермента, участвующего в синтезе гликогена, в результате чего образующийся гликоген содержит необычно длинные неразветвленные ветви. Другая же форма заболевания связана с недостатком фермента, ответственного за расщепление гликогена в точках ветвления, в результате чего легко из печени может удаляться лишь ограниченное количество глюкозы, образующейся в результате расщепления только наружных неразветвленных ветвей гликогена. [c.510]

    Сложные процессы метаболизма, запасания и расходования энергии пространственно локализованы в клетках. Дыхание реализуется в мембранах митохондрий, фотосинтез — в мембранах хлоропластов. Биохимические процессы эволюционно адаптированы. Так, у животных пустынь и у птиц главным источником метаболической энергии является жир, а не гликоген. В пустыне надо обеспечивать не только максимальный выход энергии, но и максимум образования воды — при окислении жира производится вдвое больше воды, чем при окислении гликогена. Для птиц существенна меньшая масса жира. Масса гликогена и связанной с ним воды в 8 раз больше, чем масса жира, дающая при окислении то же количество энергии. [c.54]

    Метаболизм скелетных мышц специализирован на выработке АТР, необходимого для их сокращения и расслабления. При интенсивной мышечной нагрузке основным топливом служит гликоген, который превращается в лактат. В период отдыха лактат превращается снова в гликоген печени и глюкозу. Мозг использует в качестве топлива только глюкозу и р-гидроксибутират, причем последний играет важную роль при голодании. Большая часть энергии АТР в мозгу расходуется на активный транспорт ионов Na и К и на поддержание потенциала действия мембран нервных клеток. [c.775]

    Впервые с АМР-зависимое фосфорилирование белков было выявлено при изучении метаболизма гликогена в клетках скелетных мышц. Гликоген - это основная резервная форма глюкозы как уже упоминалось, его распад в мышечных клетках регулируется адреналином (фактически адреналин регулирует как распад гликогена, так и его синтез в скелетной мускулатуре). Если, например, животное подвергнуть стрессу (испугать и т. п.), то надпочечники начнут выбрасывать адреналин в кровь, и это будет приводить различные ткани организма в состояние готовности . Циркулирующий в крови адреналин вызывает, в частности, расщепление гликогена в мышечных клетках до глюкозо-1-фосфата и в то же время подавляет синтез нового гликогена. Глюкозо-1-фосфат превращается в глюкозо-6-фосфат, который затем окисляется в реакциях гликолиза с образованием АТР, обеспечивая энергию для интенсивной работы мышц. Таким способом адреналин подготавливает мышечные клетки к усиленной работе. [c.372]

    Нуклеотиды являются регуляторами метаболизма. Циклический АМР-универсальный посредник действия многих гормонов, встречающийся повсеместно. Ковалентные модификации, производимые молекулами АТР, изменяют активность некоторых ферментов в качестве примера можно назвать фосфорилирование гликоген-синтезы и аденилирование глутамин-синтетазы. [c.255]

    Восстановление диоксиацетонфосфата в глицерофосфат происходит также в летательных мышцах насекомых по-видимому, оно представляет путь, альтернативный образованию в этих тканях молочной кислоты. Хотя превращение свободной глюкозы в глицерофосфат и пируват не дает в итоге прироста АТР, следует учесть, что в мышцах исходным материалом служит гликоген, который по сравнению со свободной глюкозой требует для затравочных реакций вдвое меньше АТР. Кроме того, дисмутация триозофосфата, приводящая к образованию глицерофосфата и пирувата, может обеспечить быструю наработку АТР при интенсивных сокращениях мощной летательной мышцы насекомого. Во время более медленной восстанпвительной фазы глицерофосфат, как полагают, снова окисляется, поступая в митохондрии этих в высокой степени аэробных клеток. Таким образом, транспортировка глицерофосфата в митохондрии служит средством доставки в митохондрии восстановительных эквивалентов, полученных от NADH. Возможно поэтому, что значение глицерофосфата для мышечного метаболизма связано в основном с его транспортной функцией, а не с участием в бысТ" ром образовании АТР. [c.349]


    Метаболизм глюкозы у животных имеет две наиболее важные особенности [44]. Первая из них — это запасание гликогена, который в случае необходимости может быть быстро использован в качестве источника мышечной энергии. Однако скорость гликолиза может оказаться высокой — весь запас гликогена в мышце может быть истощен всего лишь за 20 с при анаэробном брожении или за 3,5 мин в случае окислительного метаболизма [45]. Таким образом, должен существовать способ быстрого включения гликолиза и его выключения после того, как необходимость в нем исчезнет. В то же время должна иметься возможность обратного превращения лактата в глюкозу или в гликоген (глю-конеогенез). Запас глюкогена, содержащегося в мышцах, должен пополняться за счет глюкозы крови. Если количество глюкозы, поступающей с пищей или извлекаемой из гликогена печени, оказывается недостаточным, то она должна синтезироваться из аминокислот. [c.503]

    Слиянию генов могла принадлежать важная роль в процессе эволюции основных метаболических путей. Энергетический путь метаболизма каждого из перечисленных ниже ферментов определился, вероятно, в результате объединения копии изначального (ди)нук-леотидсвязывающего домена с одним или большим числом других доменов, отличных от первого фосфоглицераткиназа [235, 310, 311], дегидрогеназы, специфичные соответственно к глицеральдегид-3-фосфату, лактату, малату и алкоголю [91], и гликоген-фосфорилаза [236]. Как обсуждалось в разд. 5.4, (ди)нуклеотидсвязывающий домен представляет N-концевую часть первых четырех ферментов, тогда как в алкогольдегидрогеназе он расположен в С-концевой части, а в фосфорилазе — в середине цепи. Это указывает на то, что ограничения в пространственном расположении доменов не вызывали затруднений при их использовании в качестве составных блоков для построения самых сложных белков в процессе эволюции. [c.229]

    Так, совершенно очевидно, что организм длительное время может обходиться без липидов, поскольку при метаболизме глюкозы и аминокислот образуются глицерол-З-фосфат, ацетил-КоА, происходит генерация восстановительных эквивалентов на НАДФН, т. е. создаются все условия для синтеза липидов. Следует отметить, что синтез глюкозы из ацетил-КоА происходить в организме человека и млекопитающих не может и только глицерол и гликогенные аминокислоты являются предшественниками для запуска процесса глюконеогенеза. [c.449]

    Хотя подавляющее большинство цианобактерий являются облигатными фототрофами, в природе они часто находятся длительное время в условиях темноты. В темноте у цианобактерий обнаружен активный эндогенный метаболизм, энергетическим субстратом которого служит запасенный на свету гликоген, ка-таболизируемый по окислительному пентозофосфатному циклу, обеспечивающему полное окисление молекулы глюкозы. На двух этапах этого пути с НАДФ Н2 водород поступает в дыхательную цепь, конечным акцептором электронов в которой служит О2. [c.314]

    Аминокислоты в организме прежде всего используются для синтеза белков и пептидов. Кроме этого, ряд аминокислот служат предшественниками для образования соединений непептидной природы пуриновых и пиримидиновых оснований, биогенных аминов, порфиринов (в том числе гема), никотиновой кислоты, креатина, холина, таурина, тироксина и ряда других. Из углеродного скелета гликогенных аминокислот синтезируются углеводы, кетогенных — липиды и кетоновые тела. Основным органом метаболизма аминокислот является печень, где происходят многие синтетические процессы, связанные с использованием аминокислот, а также важный процесс перераспределения избыточных количеств, потребляемых с пишей углеродных цепей аминокислот и азота. [c.369]

    Типичная клетка окружена клеточной мембраной, проницаемой только для некоторых веществ эта мембрана у растений и бактерий укрепляется окружающей пористой клеточной оболочкой, которая определяет форму клетки, но не принимает никакого участия в ее метаболизме. Содержимое клетки обычно подразделяют на цитоплазму и ядро. Цитоплазма не гомогенна, она содержит разного рода частицы митохондрии, ли-зосомы, пероксисомы, рибосомы, хлоропласты, секреторные гранулы , аппарат Гольджи, микротрубочки, центросомы, мио-фибриллы, базальные тельца ресничек или жгутиков, продукты фагоцитоза, жировые капельки и гранулы, состоящие из различных продуктов метаболизма, таких, как гликоген, крахмал, сера, поли-З-гидроксимасляная кислота, оксалат кальция и т.д. кроме того, в цитоплазме имеется так называемый эндоплазма-тический ретикулум, который может быть представлен различными формами. [c.81]

    Химические реакции, протекающие в живом организме, называются процессом обмена веществ или метаболизмом (от греческого слова metabole , означающего изменение). Это реакции самых различных видов. Рассмотрим, что происходит с пищей, потребляемой человеком. Пища может содержать сложные углеводы, в частности крахмал, которые расщепляются в процессе пищеварения на простые сахара и затем проникают через стенки желудочно-кишечного тракта и попадают в ток крови. Затем эти простые сахара в печени превращаются в гликоген (животный крахмал), имеющий ту же формулу, что и крахмал (СеНюОб) ., где х — большое число. Гликоген и другие полисахариды являются одним из важных источников энергии животных. [c.490]

    Совокупность химических реакций, протекающих в живом организме, называется обменом веществ, или метаболизмом (от греческого слова т 1аЪо1е — изменение). Это реакции самых различных типов. Рассмотрим, например, что происходит с пищей, потребляемой человеком. Пища может содержать сложные углеводы, в частности крахмал которые расщепляются в процессе пищеварения на простые сахара и затем через стенки желудочно-кишечного тракта попадают в ток крови. Далее эти простые сахара в печени превращаются в гликоген (животный крахмал), имеющий ту же формулу, что и обычный растительный крахмал (СдНюОб) , где X — большое число. Гликоген и другие полисахариды — важные источники энергии в организмах животных. При окислении кислородом они образуют двуокись углерода и воду одна часть освобождаемой при этом энергии идет на производство работы, а другая — на согревание тела живого организма. [c.690]

    Гликогенам недавно были посвящены обзоры Мэннерса [561 и Стейси и Баркера [57]. В 1964 г. состоялся симпозиум по гликогену и его метаболизму, труды которого были опубликованы [58]. [c.185]

    Механизм влияния инсулина на утилизацию глюкозы включает в себя и другой анаболический процесс. В печени и в мышцах инсулин стимулирует превращение глюкозы в глюкозо-6-фосфат, который затем подвергается изомеризации в глюкозо-1-фосфат и в таком виде включается в гликоген под действием фермента гликогенсинтазы (ее активность также стимулируется инсулином). Это действие имеет двойственный и непрямой характер. Инсулин снижает внутриклеточный уровень сАМР, активируя фосфодиэстеразу. Поскольку сАМР-зависимое фосфорилирование инактивирует гликогенсинтазу, при низком уровне этого нуклеотида фермент находится в активной форме. Инсулин активирует и фосфатазу, катализирующую дефосфорилирование гликогенсинтазы, тем самым активируя этот фермент. И наконец, инсулин ингибирует фосфорилазу с помощью механизма, работающего с участием с АМР и фосфатазы, как описано выше. В результате высвобождение глюкозы из гликогена снижается. Таким образом, влияние инсулина на метаболизм гликогена также является анаболическим. [c.256]

    Гибсон, 1948 [1099]) (25080). В этом случае поврежденным ферментом является МАВН - зависимая метгемоглобин-редуктаза. Первая попытка систематического изучения группы заболеваний человека, связанных с дефектами метаболизма, бьша предпринята в 1951 году. При исследовании болезни накопления гликогена [1044] супруги Кори показали, что в восьми из десяти случаев патологического состояния, которое диагностировалось как болезнь Гирке (23220), структура гликогена печени представляла собой нормальный вариант, а в двух случаях была явно нарушена. Было также очевидно, что гликоген печени, накапливаясь в избытке, не может быть непосредственно превращен в сахар, поскольку у больных проявляется тенденция к гипогликемии. Для расщепления гликогена с образованием глюкозы в печени необходимы многие ферменты. Два из них-амило-1,6-глюкозидаза и глюкозо-6-фосфатаза-были выбраны для изучения как возможные дефектные элементы ферментной системы. В гомогенатах печени при различных значениях pH было измерено освобождение фосфата из глюкозо-6-фосфата. Результаты представлены на рис. [c.10]

    Для того чтобы обеспечить постоянное снабжение окислительного метаболизма топливом , клетка запасает его в определенных формах, а яменно в виде жиров, служащих источником жирнщ кислот, и гликогена-источника глюкозы, которая потом расщепляется до пирувата. В количественном отно-щении жиры гораздо более важны, хотя бы потому, что при их окислении освобождается в щесть с лищним раз больше энергии, чем при окислении равного количества гликогена в его гидратированной форме. Запасов гликогена в организме среднего взрослого человека достаточно на один день нормальной активности, тогда как запаса жиров хватит на месяц. Если бы главным резервуаром топлива в нашем организме служил гликоген, а не жиры, вес тела увеличился бы в среднем на 25 кг. [c.12]

    Впервые последовательность событий бьша выяснена при изучении метаболизма гликогена в клетках скелетной мускулатуры. Гликоген-это основная резервная форма глюкозы, его синтез и распад строго регулируются определенными гормонами. Если, например, животное испугать или подвергнуть иному стрессу, надпочечники секретируют в кровь адреналин, приводящий различные ткани тела в состояние готовности . Циркулирующий адреналин вызывает, в частности, расщепление гликогена в мьпиечных клетках до глюкозо-1-фосфата и в то же время прекращает синтез нового гликогена. Глюкозо-1-фосфат превращается в глюкозо-6-фосфат, который затем окисляется в реакциях гликолиза, что приводит к образованию АТР, необходимого для работы мьппц. Таким путем адреналин подготавливает мышечные клетки к усиленной работе. [c.271]

    Хотя подавляющее большинство цианобактерий могут расти, используя только энергию света, т. е. являются облигатными фототрофами, в природе они часто находятся длительное время в условиях темноты. В темноте у цианобактерий обнаружен активный эндогенный метаболизм, энергетическим субстратом которого служит запасенный на свету гликоген. В качестве основного пути катаболизирования последнего идентифицирован окислительный пентозофосфатный цикл, обеспечивающий полное окисление молекулы глюкозы. На двух этапах этого пути с НАДФ-зависимых дегидрогеназ водород (электроны) поступает в дыхательную цепь. Транспорт электронов на конечный акцептор — молекулярный кислород, сопровождающийся на определенных этапах переносом протонов через мембрану, сопряжен с окислительным фосфорилированием. Синтезируемые в этом процессе молекулы АТФ используются для поддержания в темноте жизнедеятельности облигатно фототрофных цианобактерий. [c.277]

    При изучении биохимических изменений в ходе мышечного сокращения было установлено, что при функционировании мышцы в анаэробной (бескислородной) среде происходит исчезновение гликогена и появление пирувата и лактата в качестве главных конечных продуктов. Если затем обеспечить поступление кислорода, наблюдается аэробное восстановление образуется гликоген, и исчезают пируват и лактат. При работе мышцы в аэробных условиях накопления лактата не происходит, а пируват окисляется далее, превращаясь в СО, и Н О. В результате этих наблюдений утвердилось разделение метаболизма углеводов на анаэробную и аэробную фазы. Однако это разделение носит условный характер, так как реакции гликолиза в присутствии кислорода и в его отсутствие одни и те же,— различия касаются лишь их скорости и конечных продуктов. При недостатке кислорода реокисление NADH, образовавшегося из NAD в ходе гликолиза, осуществляется путем сопряжения с восстановлением пирувата в лактат образовавшийся при этом NAD обеспечивает дальнейшее протекание реакций гликолиза (рис. 18.1). Таким образом, гликолиз может идти в анаэробных условиях, но за это приходится расплачиваться, получая меньшее количество энергии на моль утилизированной глюкозы. Следовательно, для производства данного количества энергии путем гликолиза при анаэробных условиях требуются большие количества глюкозы, чем при аэробных. [c.181]

    Главные ферменты, контролирующие метаболизм гликогена,— гликогенфосфорилаза и гликоген-синтаза—регулируются сложной серией реакщ1Й, в которых используются как аллостерические механизмы (см. с. 104), так и ковалентная модифика-Щ1Я путем фосфорилирования и дефосфорилирования фермента (см. с. 108). [c.192]

    Для гликогена мозга характерно наличие большой разветвленности за счет аФ (1-6) ГЛЮКОЗЫ, причем в центре молекулы гликогена имеются ветвления из 3—4 глюкозных остатков, а боковые цепи имеют 6—8 глюкозных остатков. При большом ветвлении гликоген легко подвергается ферментативному расщеплению, так как чем больше свободных концов в молекуле гликогена, тем легче они подвергаются воздействию ферментов и тем быстрее происходит метаболизм гликогена. Таким образом, н1гге1гснвная обновляемость гликогена мозга непосредственно связана с его своеобразным строением, точнее разветвленностью. (Е. Л. Розенфельд. Механизм регуляции действия ферментов, участвующих в обмене гликогена.— В кн. Химия и биохн-мня углеводов. М., 1969, с. 195—204). [c.264]

    Как описано ниже (разд. 14.4), явление переноса фосфата и участия фосфата в метаболических процессах было обнаружено при исследовании брожения дрожжевых экстрактов. Многочисленные опыты по изучению метаболизма в сокращающейся мышце показали, что в анаэробных условиях энергия для сокращения каким-то образом поставляется гликолизом— процессом, при котором гликоген превращается в молочную кислоту (гл. 14). Однако сокращение происходит и в мышцах, отравленных иодацетатом — ингибитором, предотвращающим гликолиз. Далее, эти мышцы продолжают сокращаться до тех пор, пока содержащийся в них креатин-фосфат не превращается полностью в креатин и Р,-. Затем было показано, что ферментная система, катализирующая эту реакцию в мышцах, действует только в присутствии адениниуклеотидов про--цесс в целом был описан следующим образом  [c.349]

    Рентгенокристаллографические исследования а- и Ь-форм гликоген-фосфорилазы значительно облегчили изучение каталитических и регуляторных механизмов этого ключевого фермента метаболизма. 841 аминокислотный остаток мономерной субъединицы компактно упакованы в три структурных домена (рис. 16.6) аминокон- [c.124]

    Биосинтез и расщепление почти всегда осуществляются различными путями. Например, путь синтеза жирных кислот отличается от пути их расщепления. Точно так же гликоген синтезируется и расщепляется в результате различных последовательностей реакций. Благодаря такому разделению пути синтеза и расщепления постоянно оказываются термодинамически выгодными. Чтобы какой-либо путь биосинтеза был экзергоническим, он должен быть сопряжен с гидролизом достаточного количества молекул АТР. Например, на превращение пирувата в глюкозу в процессе глюконеогенеза затрачивается на четыре высокоэнергетические связи Р больше, чем образуется в процессе превращения глюкозы в пируват в ходе гликолиза. Эти четыре дополнительные связи Р обусловливают экзерго-ничность глюконеогенеза при любых существующих в клетке условиях. Принципиально важная особенность метаболических путей состоит в том, что их скорость определяется не законом действующих масс, а активностью ключевых ферментов. Разделение путей биосинтеза и расщепления имеет особенно важное значение для эффективной регуляции метаболизма. [c.282]

    Ковалентная модификация. Некоторые регуляторные ферменты контролируются не только аллостерически, но и с помощью ковалентной модификации. Например, фосфорилирование повышает каталитическую активность гликоген-фосфорилазы и снижает активность гликоген-синтазы. Эти ковалентные модификации катализируются особыми ферментами. Еще один пример - глутамин-синтетаза, активность которой снижается при ковалентном присоединении остатка АМР. И в этом случае присоединение и отщепление модифицирующей группы катализируется специальными ферментами. Зачем же используется ковалентная модификация наряду с нековалентной аллостерической регуляцией Ковалентная модификация ключевых ферментов метаболизма - заключительная стадия каскада реакций, усиливающего сигнал. Благодаря этому метаболический путь может быстро включаться и выключаться под действием очень слабых сигналов, как это показано на примере стимулирующего влияния адреналина на расщепление гликогена. [c.283]


Смотреть страницы где упоминается термин Гликоген метаболизм: [c.371]    [c.345]    [c.390]    [c.323]    [c.468]    [c.645]    [c.162]    [c.84]    [c.180]    [c.40]    [c.386]    [c.12]    [c.352]    [c.285]    [c.125]   
Углеводы успехи в изучении строения и метаболизма (1968) -- [ c.256 ]

Биохимия человека Т.2 (1993) -- [ c.189 , c.195 ]

Биохимия человека Том 2 (1993) -- [ c.189 , c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Адреналин и метаболизм мобилизация гликогена

Гликоген

Гликоген метаболизм I схема

Гликоген метаболизм, каскадная регуляция

Гликоген ферменты метаболизма

Гликоген ферменты, участвующие в метаболизме

Дополнение 11-Д. Генетические нарушения метаболизма гликогена

Кальций, влияние на метаболизм гликогена

Метаболизм

Метаболизм гликогена в скелетной мышце

Ферменты, участвующие в метаболизме крахмала-гликогена



© 2025 chem21.info Реклама на сайте