Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны разделительные

    Поверхностные явления играют ключевую роль в мембранных процессах и существенны для всех типов мембран, кроме газодиффузионных. Абсолютные значения коэффициента проницаемости и селективности мембран, температурная и барическая зависимость этих характеристик, во многом определяются закономерностями сорбционного процесса на поверхности и в матрице мембраны. Обычно допускается, что скорость сорбции намного превышает скорость переноса массы и распределение вещества между сорбированной и объемной фазами равновесно. Поэтому ограничимся анализом условий сорбционного равновесия и разделительных характеристик равновесного сорбционного процесса. [c.42]


    Как показано в гл. 3, проницаемость и селективность мембраны в общем случае зависят от типа мембран, температуры, давления и состава смеси в напорном и дренажном каналах. Движущая сила процесса меняется вдоль поверхности мембран и зависит от схемы организации и структуры потоков в напорном и дренажном каналах. Таким образом, для разделительного модуля площадь поверхности мембраны будет определяться [c.158]

    Рассмотрим процессы в идеальном разделительном устройстве. Исходная газовая смесь компонентов с параметрами Т и Р поступает в разделительную камеру достаточно большой емкости — это условие позволит считать параметры смеси неизменными в процессе разделения, а саму газовую смесь в камере рассматривать как внешнюю среду. Проницание компонентов через идеальные полупроницаемые мембраны не требует, согласно второму свойству, затрат работы, чистый компонент за мембраной находится в состоянии равновесия с газовой смесью, т. е. характеризуется значениями мембранных молярных величин р , Т = Т, Soi(T, р, ), Яог(7 , р, ) и Pi )- [c.231]

    Метод ионных подвижностей — ионофорез применяют для разделения и очистки неорганических веществ. Он основан на использовании различий в числах переноса ионов отдельных компонентов раствора в электрическом поле. При сочетании достаточно высокого градиента потенциала с противотоком растворителя замедляется движение менее подвижных ионов, в то время как более подвижные проходят навстречу растворителю. Эффективность разделения ионов возрастает с уменьшением диффузии и различных конвекционных потоков, вызываемых тепловым движением ионов и молекул. Поэтому специальные разделительные трубки заполняют мелкозернистым инертным материалом либо применяют кассеты из параллельно расположенных крупнопористых мембран, ограничивающих тепловое движение ионов и молекул вдоль потока растворителя. Применяемые в разделительных трубках крупнопористые мембраны легко проницаемы и для анионов, и для катионов. [c.106]

    Основные типы мембран и их очистка. Различают мембраны монолитные (сплошные), пористые, асимметричные (двухслойные), составные (композиционные) и др., а также мембраны жидкие и мембраны ионообменные (о получении мембран и их св-вах см. Мембраны разделительные). [c.24]

    Для мембран первого типа характерно, что матрица исходного материала и компоненты газовой смеси не обладают заметной энергией связи, их взаимодействие ограничено столкновением молекул газа с поверхностью материала мембраны, появление конденсированной фазы разделяемых газов исключено. Химический потенциал компонента смеси является функцией только объемных свойств разделяемой смеси. Влияние свойств матрицы на процесс разделения определяется ее поровой структурой, лимитирующей те или иные виды массопереноса. Примером разделительных систем такого типа являются пористые стекла и достаточно разреженные газовые смеси. [c.13]


    См. также Защитная одежда. Мембраны разделительные. Фильтры Фильтрующие устройства противогазы 4/220-224 фильтры 1/191, 386, 427, 770, 772, 773, 899, 900, 931, 1105 2/1199 3/41, 637 4/141, 142, 221, 272, 282, 283, 285, 286, 647, 648 5/24, 25, 183-195 центрифуги 5/193 Финитное движение микрочастиц 2/719 Финифть 5/943 [c.736]

    МЕМБРАНЫ РАЗДЕЛИТЕЛЬНЫЕ — см. Разделительные мембраны. [c.89]

    Таким образом, если в пористой мембране удается организовать режим свободномолекулярного течения, проницаемость каждого компонента газовой смеси в изотермических условиях определяется структурными характеристиками мембраны, температурой и молекулярной массой газа и не зависит от давления. Разделительная способность является функцией только соотношения молекулярных масс и не зависит ни от свойств мембраны, ни от параметров процесса Г и Р. Из соотношения (2.52) следует, что для мембраны определенной структуры существует комплекс величин, сохраняющий постоянное значение при разделении любых смесей при любых значениях температуры и давления, если Кп>1  [c.57]

    Другой разновидностью мембранных аппаратов является центробежная установка, состоящая из вертикальной центрифуги, обечайка ротора которой выполнена в виде полупроницаемой мембраны, зажатой между двумя слоями пористого материала. Последние служат для равномерного распределения потока по площади мембран и для придания обечайке необходимой прочности. Раствор подается внутрь ротора через питающую трубу или через полый вал. Скорость вращения ротора II его размеры подбираются так, чтобы на мембрану действовало необходимое давление. Фильтрат отводится со всей поверхности мембраны в неподвижный кожух аппарата, а концентрированный раствор — переливом через борт ротора. Диаметр переливного борта больше диаметра птающей трубы, поэтому раствор движется вдоль ротора самотеком. Отмечаются высокие экономические показатели работы установок с центробежными аппаратами. К недостаткам таких установок относятся более сложные устройство и монтаж разделительной ячейки. Но установка в целом значительно упрощается, так как в системе отсутствуют насосы высокого давления. Центробежные аппараты более перспективны для проведения ультрафильтрационных процессов, так как в этом случае вследствие меньших, чем при обратном осмосе, необходимых рабочих давлениях скорость вращения ротора аппарата сравнительно невелика. [c.166]

    Мембраны разделительные — непористые полупроницаемые перегородки, избирательно пропускающие отдельные компоненты растворов или газовых смесей. Изготовляют из полимеров, стекла, металлов в виде пленок, пластин или пучков полых волокон. [c.20]

    Непористые реакционно-диффузионные мембраны отличаются от прочих химической формой связи компонентов разделяемой смеси и исходного материала мембраны. Химические реакции приводят к образованию новых веществ, участвующих в транспорте целевого компонента. Массоперенос компонентов разделяемой газовой смеси определяется не только внешними параметрами и особенностями структуры матрицы, но и химическими реакциями, протекающими в мембране. В подобных системах за счет энергетического сопряжения процессов диффузии и химического превращения возможно ускорение или замедление мембранного переноса, в определенных условиях возникает активный транспорт, т. е. результирующий перенос компонента в направлении, противоположном движению под действием градиента химического потенциала этого компонента. В сильнонеравновесных мембранных системах могут формироваться структуры, в которых возникают принципиально иные механизмы переноса, например триггерный и осциллирующий режимы функционирования мембранной системы. Обменные процессы такого рода обнаружены в природных мембранах, но есть основания полагать, что синтетические реакционно-диффузионные мембраны в будущем станут основным типом разделительных систем, в частности, при извлечении токсичных примесей из промышленных газовых выбросов. [c.14]

    Разделительную способность мембраны принято характеризовать относительной величиной коэффициента проницаемости г-го компонента, или фактором разделения мембраны  [c.12]

    Избыточное давление (до 50 Па) в аккумуляторе огнетушащего вещества создается сжатым газом, давление которого контролируется манометром 7 или реле давления. В случае нарушения герметичности разделительной мембраны 3 давление внутри аккумулятора огнетушащего вещества падает, и приборы фиксируют аварийное состояние взрывоподавителя. [c.102]

    Электрохимический процесс осуществляют в электрохимических устройствах. Если какие-либо химические вещества получают при пропускании через раствор или расплав электролита электрического тока от внешнего источника, то электрохимическое устройство называют электролизером. Если же с помощью электрохимического устройства вырабатывают электрическую энергию, то такое устройство называют гальваническим элементом или химическим источником тока (ХИТ). Любое электрохимическое устройство включает одну или несколько электрохимических ячеек, в которых размещаются электроды, электролит и, при необходимости, разделительные перегородки диафрагмы, мембраны, сепараторы. Конструкция электрохимической ячейки определяется ее функциональным назначением, размерами, условиями эксплуатации. [c.6]


    Разделение через мембраны. Б этом случае Г.р. реализуется благодаря разл. проницаемости компонентов газовой смеси через разделит, мембраны (пористые и непористые перегородки). Эффективность мембраны определяется ее уд. производительностью, т.е. кол-вом газа, прошедшего через пов-сть мембраны за соответствующее время. Аппараты для мембранного Г. р.-замкнутые объемы, разделенные мембранами на две полости. Движущая сила процесса-поддерживаемая постоянной разность парциальных давлений (или концентраций) газов по обе стороны мембраны. В зависимости от назначения мембраны изготовляют из разл. материалов (стекло, металлы, полимерные материалы), к-рым придают форму пластин, трубок, полых волокон, капилляров. Напр., для выделения Hj из продувочных газов произ-ва NH3 используют трубки из сплава Pd для тех же целей применяют полые волокна из полиариленсульфонов. Воздух, обогащенный О , получают с помощью пластин из поливинилтриметилсилана. Важная характеристика мембранных аппаратов-плотность упаковки мембраны, т.е. пов-сть мембраны, приходящаяся на единицу объема аппарата. Плотность упаковки мембран из полых волокон с наружным днам. 80-100 мкм и толщиной стенки 15-30 мкм составляет 20000 м /м , плоских мембран - 60-300 mVm . См. также Абсорбция, Адсорбция, Конденсация фракционная. Мембранные процессы разделения, Мембраны разделительные. Ректификация. [c.465]

    Так как получение аналитического решения задачи невозможно, а моделирование на ЭВМ процессов, описываемых системами уравнений типа (7.307) связано с известными трудностями, то зоны разделительного аппарата представляются совокупностью ячеек идеального перемешивания. Известно, что применение такой модели справедливо для некоторых аппаратов с непрерывно распределенными параметрами. В этом случае мембранная колонна непрерывного действия разбивается на N участков (рис. 7.23), в каждом из которых принимается, что концентрация во всем объеме участка не меняется из-за малого пути прохождения потока вдоль мембраны и отсутствия перемешивания между участками. [c.374]

    Синтез новых полимеров и особенно применение сополимеров и композиционных материалов с их неисчерпаемыми возможностями изменять структуру мембранной матрицы в принципе делает полимерные мембраны наиболее перспективным типом разделительных систем, позволяющим в максимальной степени удовлетворить специфике каждой конкретной задачи, хотя проблема оптимизации свойств материала в сочетании с другими технологическими требованиями остается весьма сложной задачей. [c.114]

    Мембранное разделение газовых смесей основано на действии особого рода барьеров, обладающих свойством селективной проницаемости компонентов газовой смеси. Обычно мембрана представляет собой жесткую селективно-проницаемую перегородку, разделяющую массообменный аппарат на две рабочие зоны, в которых поддерживают различные давления и составы разделяемой смеси. В общем случае понятие мембраны не обязательно связано с существованием такой перегородки и перепадом давления. В широком смысле под мембраной следует понимать открытую неравновесную систему, на границах которой поддерживаются различные составы разделяемой смеси под действием извне полей различной природы (ими могут быть поля температуры и давления, гравитационное и электромагнитное поле, поле центробежных сил). Разделительная способность такой системы формируется комплексом свойств матрицы мембраны и компонентов разделяемой смеси, их взаимодействием между собой. Существенна и степень неравновесностн такой системы. [c.10]

    Сборку элементов проводят в оправке, которая представляет собой круг из нержавеющей стали с четырьмя симметрично приваренными центрирующими бортиками высотой 50 мм. При изготовлении элементов первый лист мембраны укладывают на влажную поверхность паронита активной стороной вниз, а другую сторону подсушивают фильтровальной бумагой. Далее последовательно накладывают заготовку из ватмана, лавсановое кольцо, заготовку дренажной сетки (без отверстий), дренажную сетку (с отверстиями), второе лавсановое кольцо и вторую заготовку ватмана таким образом, чтобы все отверстия перетоков совпадали. В отверстия в ватмане и сетке заливают по 0,5 мл клеевой композиции и сверху накладывают вторую мембрану, предварительно подсушенную с неактивной стороны. Места склейки обжимают в течение 10—15 сив центре склеенной области пробивают переточное отверстие диаметром 15 мм. Эту операцию необходимо проводить в первые 2—3 мин после склеивания, когда место склейки еще эластичное. Для надежности склейки кромку переточных отверстий дополнительно промазывают клеем. Готовые разделительные элементы хранят в воде. [c.120]

    Мембраны, свободно проницаемые только для одного компонента, принято называть полупроницаемыми, а остальные — селективно-проницаемыми, или просто проницаемыми. При разделении газовых смесей обычно имеют дело с селективно-проницаемыми мембранами, поэтому из напорного канала через стенки разделительного элемента проникают все компоненты смеси, но с различной скоростью. Поскольку движущая сила переноса компонента определяется разностью химических потенциалов в напорном и дренажном каналах, скорость проницания каждого компонента меняется по длине мембранного элемента и зависит (как показано ниже) от термодинамических и гидродинамических параметров процесса. Скорость проницания компонентов через мембрану традиционно определяют, используя понятия и феноменологические соотношения фильтрационного процесса. Плотность потока -го компонента через мембра-ну принимают линейно зависящей от перепада давлений над и под мембраной  [c.12]

    Интеграторы-диоды обладают свойством памяти , т, е, способностью сохранять результат прохождения тока в течение некоторого времени. Это время зависит от конструктивных параметров диода и в особенности от свойств разделительной мембраны. [c.234]

    В настоящей работе проведено систематическое исследование в плане установления связи структуры асимметричной половолоконной мембраны с ее разделительными свойствами и поиск возможностей изменения структуры асимметричной мембраны в направлении достижения высоких сепарационных характеристик. [c.136]

    Наименьшей ячейкой мембранного массообменного устройства является мембранный элемент, состоящий из напбрного и дренажного каналов, разделенных селективно-проницаемой перегородкой. Тип элемента определяется геометрией разделяющей поверхности (плоские, рулонные, трубчатые, волоконные) и организацией движения потоков газа (прямо-и противоточные, с перекрестным током, с рециклом разделяемой смеси и т. д.). Напорный канал элемента плоского типа образован селективно-проницаемыми стенками, ориентированными горизонтально или вертикально. В элементах трубчатого типа напорный канал ограничен внутренней поверхностью одной трубки или наружной поверхностью нескольких соседних трубок. Разделительная перегородка обычно состоит из собственно мембраны, пористой подложки и конструктивных деталей, обеспечивающих механическую прочность и жесткость. Массовые потоки в мембране и пористой подложке ориентированы по нормали к разделяющей поверхности. [c.10]

    В случае отклонения любого из контролируемых параметров от пределов нормы, а именно понижения или повышения давления газа за регулятором подачи, хлопка в топке какого-либо котла, отсутствия циркуляции воды в системе отопления, коромысло соответствующего прибора ударяет по оси 46 молоточка 47. Молоточек падает и переходит в горизонтальное положение. При этом толкатель 45, освободившись от давления упора, вместе с толкателем 37 и клапаном 38 переходит из нижнего в верхнее положение под давлением пружины 44. Клапан 38 закрывается, и газ перестает поступать к регуляторам управления. Клапан последних закрывается, давление в камерах 5 и /6 выравнивается, клапан /4 регулятора подачи закрывается и происходит прекращение подачи газа ко всем работающим котлам. Установка разделительной мембраны 35 не допускает проникновения газа из газового клапана в помещение котельной. [c.308]

    К.Х. разрабатывает научные основы многочисл. технол. процессов, включающих ДС технологии разнообразных дисперсных материалов, в т.ч. совр. композиционных и строит, материалов, силикатов (особенно керамики и стекол), дисперсных пористых структур (катализаторов и сорбентов), пластмасс, резины, прир. и синтетич. волокон, клеев, лакокрасочных материалов технологии мех. обработки твердых тел (в т. ч. бурения горных пород), извлечения нефти из пласта с послед, ее деэмульгированием, флотации руд, мембранных процессов разделения (см. также Мембраны разделительные), процессов водоподготовки. Среди многочисл. примеров практич. приложений достижений К. X.- разработка и применение ПАВ флотореагентов, смачивателей, стабилизаторов пен и эмульсий, пеногасителей и [c.434]

    Прибор контроля ПКЦ 27 контролирует циркуляцию воды в системе отопления. Надмембранное пространство ПКЦ 27 через импульсную трубку 42 и отверстие 28 сообщается с трубопроводом обратной воды в системе отопления до циркуляционных насосов. Подмембранное пространство ПКЦ 27 через импульсную трубку 40 и отверстие 41 сообщается с трубопроводом после циркуляционных насосов. При наличии циркуляции воды в системе отопления давление воды после насосов Р , а стало быть, в подмембранном пространстве будет всегда больше давления БОДЫ Рз до насосов или в надмембранном пространстве. Сила пружины 36 Рз, которая стремится перевести толкатель 30, а также разделительную 29 и рабочую 39 мембраны в нижнее по- [c.308]

    Цель установки разделительной мембраны 29 —воспрепятствовать проникновению воды из надмембранного пространства под крышку прибора. [c.309]

    Разделяемая жидкость насосом подается через входные патрубки во внутренние полости разделительных элементов к поверхности полупроницаемых мембран. Под действием создаваемого в разделителе повышенного давления растворитель проходит через полупроницаемые мембраны и отводится через выходные патрубки для пермеата от каждого элемента к сборному трубопроводу установки. Раствор, ие прошедший через мембраны, отводится из разделителей через ьь ходные патрубки. [c.919]

    Взрывоподавляющая часть системы противовзрывной защиты представляет собой гидроимпульсное устройство, в состав которого входят распылитель, аккумулятор огнетушащего вещества и пиропобудитель (рис. 24). При подаче воспламеняющего импульса на пиропатроны 1, устанавливаемые в гнездах крышки 2, под воздействием энергии образующихся газов разрушается разделительная мембрана 3 и начинает перемещаться поршень 4, вытесняющий огнетушащий состав 5 через распылитель 6 в защищаемый аппарат. [c.102]

    В уравнениях (4.7) и (4.8) р/ и р" — парциальные давления компонентов газовой смеси у стенок напорного и дренажного каналов бт и Л, — эффективная толщина и интегральная кинетическая характеристика разделительной перегородки, включающей мембрану и пористую подложку. Если сопротивление массоперено1су в подложке незначительно, величины бт и Лг характеризуют толщину и проницаемость мембраны. Как показано в гл. 3, коэффициент проницаемости мембран определяется прежде всего локальными значениями термодинамических параметров и составом смеси у стенки напорного канала Лг = Л(Р, Г, со/,. . ., (о ). Несложно заметить, что отсос в напорных каналах, как и вдув в дренажных будет меняться вдоль канала — это определяется изменением как движущей силы, так и коэффициентов проницаемости. [c.123]

    В идеальном случае предполагается равномерное распределение скоростей и давлений вдоль мембраны. Однако на практике в зависимости от расходов и давлений такое предположение чаще всего является достаточно грубым приближением, и необходимо учитывать реальное распределение параметров. Поэтому полное математическое описание мембранного процесса разделения должно учитывать, по крайне мере, кинетику массоиереноса через мембрану с учетом взаимовлияния отдельных компонентов, гидродинамику потоков (профиль скоростей и давлений) со стороны высокого и низкого давлений, условия равновесия фаз (соотношение компонентов между полостями высокого и низкого давлений), геометрию разделительных элементов (плоские или цилиндрические мембраны.). [c.89]

    В связи с этим внимание исследователей привлекли мембраны из гораздо более дешевых, недефицитных и неотравллеыых полимерных материалов, обладающих к тому же высокими разделительными способностями по водороду. [c.272]

    В результате исследований и поиска оптимальной конструкции плоскорамных разделительных элементов был создан и испытан [118] аппарат плоскорамного типа МХТИ-1 производительностью 0,5 м ч рабочая поверхность мембраны 85 м . [c.119]

    Разделяемая газовая смесь в мембранном аппарате под давлением поступает в напорный канал, где в результате различной проницаемости компонентов через мембрану происходит изменение состава смеси легкопроникающие компоненты смеси (пермеат) после прохождения через селективный слой мембраны выводятся с установки через дренажный канал, а смесь, обогащенная труднопроникающими компонентами (ретант) и не способная проникать через слой мембраны, выводится из разделительного аппарата. [c.74]

    Ионообменные мембраны. Ионообменные мембраны также используют в качестве разделительных перегородок в электролизерах и гальванических элементах. Мембраны изготавливают из высокомолекулярных соединений (полимеров), имеющих ионогенные группы (например, —ЗОзНа, —СООН, —ЗОгОН), способные диссоциировать [c.9]


Смотреть страницы где упоминается термин Мембраны разделительные: [c.241]    [c.198]    [c.159]    [c.249]    [c.111]    [c.148]    [c.209]    [c.262]    [c.263]    [c.220]    [c.220]    [c.220]   
Химический энциклопедический словарь (1983) -- [ c.491 ]

Жидкостная экстракция (1966) -- [ c.503 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.491 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.271 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.271 ]




ПОИСК





Смотрите так же термины и статьи:

Мембраны ионитовые разделительные

Примеры расчета резервуаров, оболочек, разделительных мембран, элементов герметизирующих узлов и трубопроводов

Сущность мембранного разделения. Отличие мембранного разделения от фильтрации. Разделительные характеристики мембран. Классификация мембран. Полимерные мембраны, жидкие и керамические мембраны Мембранные разделительные модули



© 2025 chem21.info Реклама на сайте