Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость переноса

    Изомеризация олефинов и происходящее затем в большой степени насыщение посредством межмолекулярного и внутримолекулярного переноса водорода в значительной мере обусловливают наличие в бензинах каталитического крекинга углеводородов с высокими октановыми числами и приемистостью к тетраэтилсвинцу. Реакция переноса водорода была обнаружена при пропускании н-октена над катализатором крекинга ири 375° С. Оказалось, что прп этом происходит значительная изомеризация, приводящая к получению олефинов разветвленного строения, и последующее самонасыщение до нзооктанов, которое сопровождается образованием кокса [261]. Насыщение происходит легче с повышением температуры и уменьшением объемной скорости [257], однако практически бензин, содержащий больше предельных углеводородов, можно получить нри достаточно низких температурах крекинга, так как в этих условиях скорость переноса водорода превышает скорость крекинга. Переносу водорода благоприятствует также высокое отношение катализатор — сырье. [c.332]


    На границе двух различных фаз гидродинамическая обстановка обычно очень сложная. Основным понятием в учении о потоках является открытый Прандтлем очень тонкий пограничный слой (расположенный у границы текущей среды), для которого характерен гораздо больший градиент скорости, т. е. более быстрое ее изменение [6]. Независимо от Прандтля Нернст установил подобное же изменение концентрации у границы фаз 17]. Это явление также оказалось общим (как и открытые независимо друг от друга законы для потоков теплоты, массы и импульса). Таким образом, для тонкого слоя вблизи границы фаз характерно резкое изменение концентрации, температуры и скорости. Скорость переноса для любого потока имеет размерность  [c.67]

    Поверхностные явления играют ключевую роль в мембранных процессах и существенны для всех типов мембран, кроме газодиффузионных. Абсолютные значения коэффициента проницаемости и селективности мембран, температурная и барическая зависимость этих характеристик, во многом определяются закономерностями сорбционного процесса на поверхности и в матрице мембраны. Обычно допускается, что скорость сорбции намного превышает скорость переноса массы и распределение вещества между сорбированной и объемной фазами равновесно. Поэтому ограничимся анализом условий сорбционного равновесия и разделительных характеристик равновесного сорбционного процесса. [c.42]

    Предположим, что Т постоянна для всей частицы катализатора, но отличается от температуры ядра потока Т из-за сопротивления теплопередаче от частицы катализатора к потоку реагирующих веществ. В обозначениях, принятых в главе VI, скорость переноса [c.285]

    Основное уравнение диффузии без реакции. Уравнения, описывающие диффузию, даются здесь лишь для одномерного случая. Концентрация диффундирующего вещества одинакова по всей произвольной плоскости, перпендикулярной оси х, и перенос вещества осуществляется лишь в направлении оси х. Поток массы f, или скорость переноса диффундирующего вещества через единицу поверхности, перпендикулярной оси х, в данный момент составляет [c.21]

    Значения скорости переноса на единицу объема для отдельных потоков выражаются, следовательно, таким образом , для компонента [c.67]


    Диффузионные явления в контактном процессе. В соответствии с упрощенной схемой контактного процесса первым его этапом является перенос исходных веществ из газовой фазы к внешней поверхности катализатора. Однако большинство промышленных катализаторов имеет развитую внутреннюю поверхность, иногда в десятки тысяч раз превышающую внешнюю поверхность. Скорость переноса реагентов к внутренней поверхности зерен катализатора оказывает большое влияние на ход контактного процесса. [c.282]

    С экономической точки зрения, вероятно, выгодное процессы, которые лимитируются скоростью переноса. При определенных условиях лимитирующим фактором является допустимый перепад давления, соответствующий допустимой скорости движения жидкости или адсорбента. Эти условия можно без особых затруднений определить заранее на основании имеющихся данных. Однако, когда лимитирующим фактором является скорость переноса, производительность процесса можно заранее рассчитать только для специальных случаев. [c.156]

    Измерения в таком же сосуде, но с диспергированием газа в жидкости также показали, что при высокой интенсивности перемешивания скорость абсорбции пропорциональна давлению кислорода. Скорость абсорбции оставалась неизменной при использовании кобальта вместо меди (с той же концентрацией). Это свидетельствовало о независимости скорости абсорбции от скорости химической реакции и о влиянии на нее лишь скорости переноса от поверхности в массу жидкости. По данным Филлипса и Джонсона, значения киа при 600 и 4500 оборотах ъ I мин составляли около 0,044 и 0,88 eк соответственно. [c.256]

    Когда скорость адсорбции определяется внутренней диффузией, она обратно пропорциональна квадрату диаметра частицы. При этом уменьшение размера частицы существенно увеличивает скорость переноса, однако для неподвижного адсорбента соответственно растет и требуемый перепад давления. Если величина перепада давления имеет существенное значение, то следует уравновесить влияние этих факторов, исходя из экономической целесообразности. Так как температура оказывает сильное влияние на скорость переноса, а также на величину перепада давления (в результате изменения вязкости), она может быть важным фактором при выборе оптимального размера частиц. [c.160]

    Для гетерогенных систем скорость переноса вещества между фазами (и на поверхностях раздела фаз) во многих случаях определяет величину суммарной скорости реакции и, следовательно, условия контактирования реагентов, находящихся в разных фазах. [c.30]

    Соединения включения с пустотами в виде каналов позволяют достаточно селективно разделять углеводороды, имеющие характерные для определенного гомологического ряда структурные элементы. Соединения включения с пустотами в виде ячеек иногда позволяют разделять два смежных гомолога (например, бензол и толуол) было предложено для этого также использовать соединения типа гидратов углеводородов. Соединения включения с пустотами в виде слоев чаще используют при избирательной сорбции в динамических системах, где наряду с молекулярными характеристиками компонентов заметную роль играет скорость переноса вещества в свободном объеме. [c.92]

    Скорость переноса компонентов Кг и (скорость их молекул по отношению к движущемуся материалу) будет меньше скорости газового потока. Объясняется это тем, что молекулы разделяемых компонентов частично связаны с движущимся вниз материалом. В случае твердого адсорбента скорость переноса зависит от коэффициента адсорбции, в случае жидкой пленки на инертном носителе — от коэффициента распределения. Изменяя соответствующим образом объемную скорость газового потока и скорость движения твердого материала, можно добиться того, чтобы значение скорости движения твердого материала лежало между скоро- [c.34]

    Я — скорость переноса растворенного газа А из пленки в основную массу жидкости, моль см сек) [c.14]

    Скорость переноса растворенного газа через единицу поверхности любой плоскости, параллельной поверхности жидкости, составляет [c.43]

    Следует заметить, что прагматический подход автора книги к выбору той или иной модели для рассматриваемых здесь целей, вероятно, оправдан на современном этапе развития знаний о структуре турбулентных потоков. Однако дальнейший прогресс теории, несомненно, потребует 6. 62 более глубокого и физически обоснованного изучения реальных явлений, определяющих скорость переноса в пограничном слое. Прим. пер. [c.107]

    Разделение бинарных смесей. Скорость переноса g, [моль/ (м -с-Па)] компонентов А и В через мембрану описывается известными феноменологическими соотношениями  [c.189]

    Под термином диффузия будет пониматься не только обычная молекулярная диффузия, но и турбулентная диффузия, а также диффузия, обусловленная влиянием насадки, вызывающим хаотическое перемещение жидкости или газа. Конвективное движение реакционной смеси, вызываемое неравномерностью распределения температур, может также служить источником диффузии. Следовательно, под диффузией будет пониматься перенос части жидкости или газа под влиянием градиента концентрации, независимо от механизма этого переноса. Предполагается, что скорость переноса пропорциональна величине градиента концентрации с константой пропорциональности О. Таким образом, для диффузии в направлении у [c.59]


    Учет особенностей незамерзающих прослоек позволил получить (на основе термодинамики необратимых процессов и теории расклинивающего давления) уравнения течения, связывающие скорость переноса влаги в мерзлых грунтах и пористых телах с теплотой фазового перехода лед — вода [32]. Более подробно эти вопросы рассматриваются в разделе 6 этой же главы. [c.11]

    В определенных геометрических и гидравлических условиях можно рассчитать скорость переноса массы с помощью диффузии. Если реакция протекает в области внешней диффузии, то ее скорость должна соответствовать рассчитанной скорости диффузии. Если скорость реакции много меньше этой величины — это значит, что реакция протекает в кинетической области. Очевидно, что скорость реакции не может превышать скорость диффузии. Если условия не позволяют точно рассчитать перенос массы, а эксперимент указывает на увеличение скорости реакции с увеличением скорости потока, то можно считать, что на скорость реакции влияет перенос вещества. Сильное влияние температуры свидетельствует о том, что процесс идет в кинетической области. [c.96]

    Если средняя длина свободного пробега молекул намного меньше диаметра поры, то молекулы диффундирующих веществ сталкиваются друг с другом гораздо чаще, чем со стенками поры, и последние не оказывают существенного влияния на скорость диффузии в пористом зерне. В этих условиях диффузия в порах протекает так же, как и в объеме неподвижной жидкости или газа, и скорость переноса вещества вдоль поры, отнесенная к единице ее поперечного сечения, определяется законом Фика  [c.151]

    Расчетные соотношения для коэффициентов диффузии получены на основе представлений об аналогии этих -процессов в пористых и непористых двухфазных мембранах [6]. Дисперсная фаза в виде кристаллитов и других плотных структурных образований играет ту же роль, что непроницаемый скелет пористой мембраны — на межфазной поверхности возможна сорбция растворенного газа из дисперсионной среды форма и распределение плотных включений в матрице оказывают влияние на скорость переноса массы. [c.80]

    Совместное решение уравнений (5.25), (5.28) и (5.46) приводит к следующим выражениям скорости переноса через мембрану компонентов А В соответственно  [c.166]

    Скорость переноса любого из компонентов газовой смеси через мембрану можно представить модифицируя известное уравнение массопереноса  [c.178]

    Ранее опубликовано значительное число работ, в которых коэффициенты массообмена вычисляются на основании решений задач нестационарной сорбции и ионообмена в предположении, что скорость процесса определяется переносом вещества из потока к поверхности зерен. Большинство из этих работ приводит к зависимостям, удовлетворительно согласующимся с формулами (IV. 71) и (IV. 72). Подробнее эти работы здесь не рассматриваются, поскольку процессы сорбции и ионного обмена гораздо сложней нестационарного теплообмена и указанная выше согласованность результатов может быть истолкована лишь как подтверждение того, что в исследованных процессах скорость переноса действительно определяется массообменом на поверхности зерен. [c.161]

    Скорость переноса вещества н фазе обратно пропорциональна сопротивлению сред1.(, которое складывается из сопротивлений, оказываемых основной массой среды, буферным и пограничным слоями. Часто оказывается удобным условно рассматривать все явление массоотдачи как происходящее за счет только молекулярной диффузии в области постоянного градиента концептрации или, в случае газов, постоянного градиента парциального давления. В этом случае вводится фиктивная толщина ламинарного слоя бе, в котором сонротивление диффузии принимается равным сумме сопротивлений реального ламинарного слоя, буферного слоя и турбулентной зоны.  [c.71]

    Для объяснения низкой скорости скелетной изомеризации при значительной скорости переноса метки вдоль цепочки н-бутана высказано предположение [94], что в тех случаях, когда для протекания реакции необходимо образование первичного карбениевого иона, с большей скоростью образуется протонированный циклопропан. Через промежуточное образование последнего может, например, протекать изомеризация н-пентана в изопентан  [c.206]

    Майр и соавторы [33] разработали метод анализа экспериментальных данных для равновесного процесса, при котором бинарная смесь пропускается через длинную колонну, заполненную неподвижным и первоначально сухим силикагелем. Вслед за этой смесью вводится жидкость, полностью вытесняющая оба компонента из адсорбента. По аналогии с перегонкой при полном орошении эти авторы рассчитали коэффициент разделения Л для различных систем. Они также расширили аналогию, вычислив высоты, эквивалентные одной теоретической тарелке. Такие высоты нельзя применять, если лимитирующил фактором процесса является скорость переноса. [c.156]

    Хроматография выполняется в простой вертикальной трубке, в которую заранее помещается слой адсорбента. Образец вводится сверху и вымывается подходящим растворителем. Вследствие различной адсорбируемости компо-невтов или групп колшснентов нефти различна и скорость переноса, что и приводит к последовательному вымьранию разделяемых частей. Правильный выбор типа и количества адсорбента, а также промывающей жидкости обеспечивает четкое разделение. [c.389]

    Важными для технологии являются данные о количестве олефина, реагирующего в единицу времени с единицей объема Н2504 (определенной концентрации) в условиях эффективного контактирования фаз (при которых скорость переноса массы не ограничивала скорости химического процесса). [c.194]

    Если из общего числа ударяющихся о поверхность молекул часть приходится на те из них, которые отражаются от поверхности жидкости обратно в газовую фазу, и эта часть составляет (1— ), то остальные молекулы газа внедряются в жидкость в количестве Rrn- Чистая скорость переноса молекул из газа в жидкость R) не равна R , потому что одновременно молекулы переходят в противоположном направлении. При равновесии чистая скорость переноса равна нулю (скорости переноса из жидкости в газ и из газа в жидкость равны друг другу). Когда концентрация растворенного газа у поверхности жидкости равновесна давлению р , скорость переноса из жидкости в газ составляет 2nRTAi. Если же [c.73]

    Здесь А — концентрация растворенного газа у поверхности раздела между жидкостью и газом, соответствующая условиям равновесия с парциальным давлением газа в газовой фазе. Пока будем считать, что парциальное давление газа одинаково во всех точках рассматриваемого элемента пространства. Влияние на это парциальное давление других газов, обладающих низкой растворимостью, будет рассмотрено в разделеУ-13. Символом а обозначена поверхность контакта между газом и жидкостью, заключенная в единице объема системы, — коэффициент физической массоотдачи в жидкой фазе. Величина Н представляет собой среднюю скорость переноса газа через единицу поверхности действительная же скорость массопередачи может меняться как от точки к точке, так и со временем. Значение Л соответствует средней концентрации растворенного газа в массе жидкости. [c.99]

    Ионы Na" и 1 в реакции не участвуют. Распределение различных ионов в пленке показано на рис. V-8. Для каждого иона можно записать уравнение типа уравнения (1,31), выражающее скорость переноса этого иона как функцию от подвижностей и локальных концентраций и концентрационных градиентов всех присутствующих ионов. Для упрощения принято, что градиенты концентрации неизменны (например, для иона он равен р/б во всех точках), а значения концентрации каждого иона в уравнении (1,31) взяты усредненными в пленке, например р/2 — для Н +. Таким образом, можно записать четыре уравнения типа (1,31) для скоростей переноса всех четырех участвующих ионов, выраженных через концентрации т, п, р, q, S, толщины пленок б и б и подвижности ионов. Учитывая, что Ru+ = R - = —Roh- = (скорость абсорбции НС1) и i Na+ = о, можно избавиться от неизвестных т, s и б и получить выражение для Rb/p через подвижности ионов и qln и qlp. Скорость физической абсорбции хлористого водорода водой с той же толщиной пленки б была бы pDh i/6 отсюда коэффициент ускорения Е, показывающий, во сколько раз реакция ускоряет абсорбцию, выражается отношением R8Ip)IDh i- [c.143]


Смотреть страницы где упоминается термин Скорость переноса: [c.170]    [c.129]    [c.208]    [c.15]    [c.170]    [c.42]    [c.251]    [c.467]    [c.168]    [c.149]    [c.181]    [c.34]    [c.35]    [c.73]    [c.74]    [c.161]    [c.170]    [c.95]   
Физико-химические основы получения, переработки и применения эластомеров (1976) -- [ c.344 ]

Гелий (1949) -- [ c.351 ]




ПОИСК







© 2025 chem21.info Реклама на сайте