Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны жидкие

    В процессе разделения ПАВ адсорбируется на границе раздела мембрана — раствор и образует на поверхности мембраны жидкий селективный слой. Поэтому такие мембраны принято называть жидки-м и . Жидкие мембраны образуются за счет поверхностной активности молекул в растворе. С увеличением содержания ПАВ селективность мембраны возрастает, а проницаемость падает до тех пор, пока не будет достигнута критическая концентрация мицеллообразования (ККМ). При этой концентрации селективность и проницаемость достигают своих постоянных значений (рис. IV-23). Причиной этого является растущее покрытие поверхности раздела мембрана — раствор слоем адсорбированных молекул ПАВ. Этот слой увеличивает сопротивление прохождению как воды, так и соли вплоть до достижения ККМ, при которой покрытие нижележащей ацетатцеллюлозной мембраны полностью завершено. Инфракрасные спектры ПАВ показали сильное взаимодействие между гидрофильными группами эффективной добавки и молекулами воды (подробнее о механизме данного процесса см. стр. 212). [c.197]


    Основные типы мембран и их очистка. Различают мембраны монолитные (сплошные), пористые, асимметричные (двухслойные), составные (композиционные) и др., а также мембраны жидкие и мембраны ионообменные (о получении мембран и их св-вах см. Мембраны разделительные). [c.24]

    Жидкие мембраны — жидкий ионообменник, удерживаемый пористым диском из пластифицированного материала, непроницаемым для водных растворов. Такая конструкция жидкой мембраны позволяет контактировать ионообменнику с анализируемым раствором и одновременно отделяет внутренний, граничащий с ионообменником раствор от раствора образца. [c.67]

    В некоторых конструкциях ТРВ применяют отопление мембраны жидким хо- [c.378]

    Это деление использовано в данной книге, однако упор сделан в основном на пористые и непористые мембраны. Жидкие мембраны [c.89]

    Мембраны Жидкие мембраны на подложках [c.356]

    Процессы мембранного разделения с использованием обратноосмотических мембран однотипны. Исходную разделяемую жидкость насосом под давлением прокачивают с определенной скоростью над рабочим слоем мембраны. Вода и часть растворенных в ней веществ проталкиваются сквозь поры мембраны и отводятся в виде фильтрата. Молекулы, их ассоциаты и частицы жидкой смеси, имеющие больший размер, чем размеры пор мембраны, задерживаются, концентрируются в остатке жидкой смеси и образуют второй продукт процесса — концентрат. Концентрат циркулирует непрерывно до получения требуемой или допустимой степени обезвоживания задержанных мембраной веществ. Процесс осуществляют при давлении 1,4—5 МПа и скорости истока жидкой среды над мембраной 0,2—0,3 м/с. Установки обратного осмоса компактнее дистилляционных и электродиализных, просты и удобны в эксплуатации. [c.107]

    Особый вид электрохимического равновесия между двумя жидкими фазами (электролитами), разделенными мембраной, может возникнуть в тех случаях, когда мембрана непроницаема для некоторых из ионов, на которые диссоциируют растворенные вещества. Так, многие мембраны непроницаемы для больших органических ионов, например для ионов кислот с большим молекулярным весом. Равновесия этого типа могут характеризоваться как разностью электрических потенциалов, так и разностью гидростатических давлений по обе стороны мембраны. Подобные равновесия называются мембранными .  [c.570]

    Имеются сообщения о хороших результатах, полученных при разделении сложных смесей жидких веществ при помощи непористых пластмассовых мембран. Разделение компонентов жидкой смеси в этом случае достигается вследствие растворимости одного из компонентов в материале, из которого изготовлена мембрана. Выделяемый компонент проходит через пленку мембраны и выделяется с другой ее стороны в парообразном состоянии. [c.35]


    Методы расчета коэффициента активности компонента в газовой фазе достаточно известны [1, 2]. Парциальный мольный объем растворенного газа при бесконечном разбавлении в матрице мембраны в первом принижении принят независимым от давления порядок величины V°°tm соответствует мольному объему жидкой фазы растворенного газа (30—50 см моль). Анализ показывает [2], что при умеренных давлениях (до [c.73]

    Процессы разделения жидких систем играют важную роль во многих отраслях народного хозяйства. Для осуществления этих процессов уже давно применяют разнообразные способы перегонку и ректификацию, абсорбцию и адсорбцию, экстракцию и др. Однако природа за миллионы лет эволюции живых организмов выработала наиболее универсальный и совершенный метод разделения с использованием полупроницаемых мембран. Действительно, биологические мембраны обеспечивают направленный перенос необходимых организму веществ из внешней среды в клетку, и наоборот. Без мембран невозможны были бы дыхание, кроветворение, синтез белка, усвоение пищи, удаление отходов и другие процессы. [c.13]

    Диффузионные мембраны обычно применяются для разделения газовых и жидких смесей методом испарения через мембрану [1]. Для разделения растворов под действием градиента давлений эти мембраны практического применения пока еще не находят, так как скорость процесса при использовании известных мембран этого типа очень низка. Она может быть увеличена путем создания ультратонких анизотропных диффузионных мембран (рис. П-2), а также повышением температуры разделяемой смеси. Перенос вещества через непористые мембраны рассмотрен в работах [1, 11]. [c.47]

    При изучении механизма мембранных процессов разделения жидких смесей необходимо учитывать три основных фактора и их взаимосвязь 1) структуру мембраны 2) структуру разделяемого раствора и его основные термодинамические характеристики 3) взаимодействие раствора (и растворенного вещества) с материалом мембраны. [c.200]

    Недостаточная изученность явлений переноса через мембрану и трудность подбора материала мембраны (пока он ведется в большей степени экспериментально) являются основными сдерживающими факторами интенсивного внедрения этого способа разделения. Кроме того, сильная зависимость долговечности мембран от механических нагрузок, температуры, примесей в значительной степени ограничивает область их применения. Это особенно относится к разделению жидких смесей, где труднее обеспечить однородность потока. [c.86]

    Для выделения н-алканов можно применять жидкие мембраны [5С5, газовую хроматографию [51], адсорбцию на угле [52], термодиффузионное разделение. [c.258]

    Для селективного выделения Oj и HjS из смесей газов, содержащих в основном метан, в промышленном масштабе используют только полимерные мембраны или мембраны на основе блок-сополимеров. Перспективным вариантом этого процесса является мембранный катализ использование квази-жидких мембран, на поверхности которых материал мембраны (для СОз и HjS это щелочи или соли щелочных металлов) обратимо взаимодействует с выделяемым компонентом, облегчая [c.74]

    В последние годы все большее внимание уделяют разделению жидких и газовых смесей с использованием полупроницаемых мембран (мембранные методы). Полупроницаемые мембраны обладают замечательным свойством — пропускать одни вещества и задерживать другие. Для использования в крупных промышленных установках разработаны четыре основных типа аппаратов для мембранного разделения с трубчатыми мембранными элементами типа фильтр-пресса с плоскокамерными мембранными элементами с мембранами в виде полых волокон с рулонными или спиральными мембранными элементами. [c.164]

    Вследствие малой скорости диффу ши газов через непористые мембраны осуществить процесс в газовой фазе в промышленном масштабе не удалось. Поэтому практический интерес представляет лишь процесс в жидкой фазе. Разделение основано на различии в форме молекул разделяемых компонентов н растворимости их в материале мембраны. [c.79]

    Для разделения углеводородных смесей могут использоваться и жидкие мембраны, образованные водными растворами ПАВ [c.67]

    Фильтрация — процесс разделения суспензии с помощью пористой перегородки (мембраны), через которую под давлением проходит жидкая фаза (фильтрат), а частицы суспензии задерживаются (осадок). Перепад давления Ар может создаваться гидростатическим давлением слоя суспензии (до 50 кПа), вакуумом (50—90 кПа), или сжатым воздухом (не более 300 кПа). Общее дифференциальное уравнение фильтрации имеет вид, подобный уравнению для потока в пористом теле, нанример, (IV. 93)  [c.242]


    После открытия краун-эфиров высказывались предположения, что хиральные носители могут обеспечивать хиральную специфичность при переносе доноров через жидкие мембраны. Действительно, Крам и сотр. обнаружили разделение энантиомеров при переносе солей аминоэфиров (донорных соединений) из одного водного раствора через слой хлороформа в другой водный раствор, что достигалось с помощью синтетических нейтральных липофильных и хиральных акцепторов [136]. [c.278]

    Жидкие мембраны. Основное отличие жидких мембран от твердых заключается в том, что они содержат подвижные ионогенные группы. Принцип действия такой мембраны представлен [c.46]

Рис. 7. Схематическое изображение жидкой мембраны Рис. 7. <a href="/info/376711">Схематическое изображение</a> жидкой мембраны
    Технические комиссии, занимавшиеся анализом причин аварий, предложили ряд мероприятий, исключающих попадание солей аммония в испаритель с жидким аммиаком. Предложено организовать отстой жидкого аммиака в течение 4 ч и обогрев трубопровода на участке от аппарата подготовки аммиака до уровнемера-, установить дублирующий уровнемер для жидкого аммиака улучшить конструкцию аварийной линии для сброса на свечу после контактного аппарата, чтобы предотвратить разрушение ее элементов при срабатывании мембраны, улучшить ревизию электропнев-матических клапанов и др. [c.42]

    Следует отметить, что в настоящее время многими исследователями ускоренно разрабатываются и так называемые квазн-жидкие мембраны, принцип действия которых основан на протекании обратимой химической реакции материала мембраны (для кислых газов это обычно щелочи, или соли щелочных металлов) с выделяемым (целевым) компонентом и облегченным переносом этого компонента (обычно в виде комплекса с поглотителем) через мембрану. Применение такого рода мембран, отличающихся сверхвысокой селективностью ( апример, для смеси СО2—СНд значение фактора разделения может достигать нескольких тысяч) может позволить улучшить эффективность проведения процессов мембранного газоразделения, расширить область их применения. Однако мембраны этого типа пока еще не вышли из стадии лабораторных разработок [51, 57—59]. [c.286]

    Условность первого метода заключается в том, что измеряется давление Смеси паров испытуемого нефтепродукта с водяным паром и воздухом при постоянном соотношении паровой и жидкой фаз, равном 4. К подобным же условным методам относится метод Вапявского - Вударова (ГОСТ 1668 - 53). В качестве примеров методов определения истинных значений ДНП мо.гут служить мембранный [98] и тензиметрический [99] методы. Принцип обоих методов идентичен испытуемое вещество помещают в предварительно вакуумированную камеру, отделенную от рабочей камеры. Давление в камере за счет испытуемого вещества уравновешивают воздухом в рабочей камере, а затем давление воздуха измеряют одним из обычных типов манометров. Отличаются эти методы только способом разделения камер в мембранном приборе - это эластичная мембрана, а в тензи-метрическом - ртуть. [c.165]

    Жидкостные электроды. В жидкостных ионселективных электродах возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения иона между жидкой и органической фазами. Ионная селективность достигается за счет различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны. В качестве электродноактивного соединения в жидкостных ионселективных электродах могут быть использованы хелаты металлов, ионные ассоциаты органических и металлосодержащих катионов ц анионов, комплексы с нейтральными переносчиками. Большое распространение получили пленочные пластифицированные электроды, выпускаемые промышленностью и имеющие соответствующую маркировку, например, ЭМ—СЮ4 01, ЭМ—НОз —01. Чувствительный элемент таких электродов состоит из электродноактивного компонента, поливинилхлорида и растворителя (пластификатора). В лабораторной практике используют аннонселективные электроды, для которых электродноактивным соел,инением являются соли четвертичных аммониевых оснований. [c.121]

    У л ьт р а ф и л ь т р о в а н и с — процесс разделения высокомолекулярных и низкомолекулярных соединений в жидкой фазе с использованием селективных мембран, пропускающих преимущественно или только молекулы низксмолекулярных соединений. Движущей силой ироцссса является разность давлений— рабочего (0,3—1 МПа) и атмосферного — по другую сторону мембраны. [c.79]

    Микрооргангомы могут расти как на насыщенных, так и на ненасыщенных углеводородах [266]. Наиболее часто используются парафины нормального строения. Микроорганизмы могут использовать газообразные алканы, а также жидкие парафины 9- 16, низкомолекулярные жидкие парафины s- g обычно не используются, потому что они способны растворять клеточные мембраны, вследствие чего микроорганизмы гибнут. [c.102]

    В работе [Зб]отмечено, что разделение углеводородов достигается селективным проникновением через динамические жидкие мембраны, образованные растворами ПАВ на поверхности купель. Правильно подобранные ПАВ или смесь различных веществ позволяет повысить селективность разделения. Основными достоинствами динамических мембран являются высокая проницаемость и селективность по отношению к компонентам сырья, возможность образования их за счет микропримесей, находящихся в растворе. [c.54]

    Поверхностное натяжение и поверхностное давление. Элементарный расчет Рэлея показал, что возможно непосредственное экспериментирование с мономолекулярным слоем на поверхности жидкостей. Если принять, что слой однороден, то это заключение не подлежит сомнению. Из него можно сделать ряд дальнейших выводов относительно свойств такого слоя. Прежде всего, согласно молекулярно-кинетическим представлениям, молекулы в монослое должны двигаться так же, как и молекулы в растворе. Следовательно, в поверхностном слое должно существовать своего рода двумерное осмотическое давление, которое стремится распределить нанесенные на поверхность молекулы равномерно по всей поверхности. Причиной этого давления является, очевидно, хаотическое тепловое движение молекул в слое. Перегородим поверхность жидкости несмачиваемой пластинкой, которая касается поверхности (например, полоской парафинированной бумаги, как делала Поккельс). Если по одну сторону перегородки нанести известное количество нерастворилюго вещества, то она будет играть роль идеальной полупроницаемой мембраны нерастворимое вещество не может проникнуть через нее, а молекулы жидкой подложки, подныривая снизу, свободно переходят на другую ее сторону. Следо. [c.124]

    Классификации ионоселективных электродов. Мембранные ио-носелективные электроды можно классифицировать по различным признакам по агрегатному состоянию, по типам активного компонента мембраны и т.д. Различают твердые и жидкие мембраны. В свою очередь твердые мембранные электроды могут быть гомогенными и гетерогенными. [c.39]

    А-В константа равновесия реакции В+ + А ХГ В + А. Иа (2.11) следует, что селективность жидкой мембраны зависит от отношения коэффициентов распределения и подвижностей диссоциированных ионов. Следовательнб, селективность при полной диссоциации определяется только природой растворителя и не зависит от природы растворенного органо-фильного аниона. [c.47]

    Таким образом, электродный потенциал жидкой мембраны с значительной ассоциацией определяется двумя логарифмическими выражениями, относительный вклад каждого из них эависит от параметра Т  [c.47]


Смотреть страницы где упоминается термин Мембраны жидкие: [c.32]    [c.711]    [c.100]    [c.178]    [c.109]    [c.39]    [c.52]    [c.311]    [c.158]    [c.319]    [c.40]    [c.48]    [c.48]    [c.56]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.322 , c.323 ]

Электрохимическая кинетика (1967) -- [ c.89 ]

Химический анализ (1979) -- [ c.269 , c.271 ]

Теоретическая электрохимия (1981) -- [ c.203 , c.207 ]

Баромембранные процессы (1986) -- [ c.35 , c.129 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.322 , c.323 ]

Иммобилизованные ферменты (1987) -- [ c.70 ]

Мембранная фильтрация (1978) -- [ c.28 ]




ПОИСК







© 2025 chem21.info Реклама на сайте