Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидродинамика потоков

    В промышленном химическом процессе могут протекать одновременно несколько (и даже несколько десятков) простых химических реакций, связанных дополнительно с гидродинамикой потока, переносом массы и тепла. Поэтому для процесса, проводимого в большом масштабе, введем понятие так называемой технической скорости превращения. В общем случае эта скорость будет функцией не только состава системы и температуры, но также скорости [c.203]


    Точный расчет представляет значительные трудности и требует детального экспериментального изучения гидродинамики потоков. В настоящее время проведение такого рода расчетов не представляется возможным. В связи с этим в последние годы успешно развивались приближенные методы расчета массопередачи с учетом продольного перемешивания. Наибольшее развитие и применение получили методы расчета на основе диффузионной и ячеечной моделей. [c.231]

    Гидродинамика потока. Характерные черты гидродинамики потока в зернистом слое непосредственно связаны с его геометрией. В этой книге будем рассматривать только особенности течения жидкости или газа через зернистый слой, которые непосредственно влияют на процессы переноса вещества и тепла. При умеренных [c.214]

    Физические характеристики отдельных частиц катализатора влияют на кинетику реакций и на гидродинамику потока. Особенно важны такие характеристики, как диаметр частиц, удельная поверхность, пористость и диаметр пор. Эти характеристики связаны с каталитической активностью и для их измерения были разработаны весьма точные методы. В табл. 72 приведены некоторые характеристики типичных катализаторов. [c.307]

    Традиционный подход к решению задач массо- и теплообмена заключается в исследовании уравнений конвективного переноса, в которых компоненты скорости жидкости определены из рассмотрения соответствующей этому процессу гидродинамической задачи. При этом не учитывается влияние массовых и тепловых потоков на гидродинамические характеристики течения. Для экстракции, абсорбции и ряда других процессов такие приближения дают удовлетворительные результаты. Однако в ряде задач теплообмена, связанных с испарением или конденсацией капель, массообмен может оказывать существенное влияние на гидродинамику потока. [c.168]

    По-видимому, в тех случаях, когда константа скорости реакции немала, гидродинамические изменения в потоке не успевают оказать заметного влияния на характер химического взаимодействия реагентов и ускорение переноса определяется главным образом за счет химической реакции. Для медленных реакций диффузия и химическая реакция протекают одновременно, и в этих условиях фактор ускорения будет зависеть от гидродинамики потока, В частности, расчеты Крылова [400] для реакции первого порядка показьшают, что при А 1Л(1 <1 [c.275]

    Поскольку значения фактора ускорения, рассчитанные из решения системы уравнений (6.69)-(6.72), близки к данным, полученным по пенетрационной теории, то для процесса хемосорбции при умеренных значениях константы скорости реакции величину Ф также можно представить приближенной зависимостью (6-51). Роль гидродинамики потока в этом случае проявляется через параметр М, в котором коэффициент массопередачи определен в зависимости от условий обтекания частицы [c.275]


    Возможность разборки, осмотра, чистки и замены ТФЭ в блоке хорошая гидродинамика потока в напорном канале [c.140]

    Ухудшенная гидродинамика потока в напорной камере необходимость замены всего блока и невозможность его регенерации высокая материалоемкость аппарата [c.140]

    Возможность осмотра и чистки рабочей поверхности мембраны хорошая гидродинамика потока в напорной камере [c.141]

    Усреднение локальных скоростей потока по всему сечению реактора дает среднюю скорость потока, которая является основным наблюдаемым параметром, определяющим закономерности течения в зернистом слое. Вместо средней скорости потока и часто используют фильтрационную скорость и> = ги (где е — доля свободного объема слоя). Все эмпирические зависимости коэффициентов переноса от гидродинамики потока выражают через среднюю или чаще фильтрационную скорость. Обе эти величины, конечно, не полностью определяют характер течения. Неудивительна поэтому невысокая точность большинства эмпирических закономерностей, что объясняется наличием случайных факторов в неупорядоченных крупнозернистых средах. [c.218]

    Высота слоя катализатора в емкостном контактном аппарате определяется кинетическими параметрами процесса с учетом гидродинамики потока. Наиболее тонкий слой становится двумерным и может заменяться сеткой из каталитического материала. Это имеет место при проведении весьма быстрых реакций во внешнедиффузионной области, например при окислении аммиака до окислов азота. [c.265]

    Для характеристики совместного влияния естественной шероховатости на теплообмен и гидродинамику потока в литературе используется коэффициент эффективности, который при отнесении к скорости потока в шероховатом ка-92 [c.92]

    Детерминированное описание строится на основе анализа химической и физической сущности моделируемого объекта и состоит из фундаментальных законов и закономерностей химической кинетики, термодинамики, законов сохранения массы, нергии. Оно учитывает такие явления, как диффузию, тепло-I массоперенос, гидродинамику потоков. [c.255]

    В настоящее время известно большое количество алгоритмов расчета массообменных процессов (ректификация, экстракция, абсорбция, адсорбция и т.д.), отличающихся степенью детализации отдельных элементов, но, по сути, предназначенных для решения систем уравнений материального и теплового балансов, нелинейность которых зависит от точности описания парожидкостного равновесия, кинетики массопередачи, гидродинамики потоков. Объем входной информации зависит от точности модели, однако выходная информация подавляющего большинства алгоритмов практически одинаковая — профили концентраций, потоков и температур по высоте аппарата и составы целевых продуктов. Правда, соответствие результатов расчета реальным данным будет определяться тем, насколько точно в модели воспроизведены реальные условия. [c.314]

    Таким образом, при известной гидродинамике потоков задача расчета разделительной способности тарелки состоит из расчета локальной эффективности массообменного элемента, матрицы коэффициентов эффективности для соответствующей модели структуры потоков, усредненного состава пара, уходящего с тарелки. [c.353]

    В силу стохастического характера явлений массопереноса достижение равновесного состояния подчинено вероятностным законам распределения энергии и массы в пространстве и по времени. К наиболее существенным причинам неравновесности массообмена в промышленных условиях можно отнести неравномерность распределения частиц потока по времени пребывания обратный заброс фаз в результате механического уноса недостаточное время контакта фаз или межфазной поверхности контакта. Степень достижения равновесия на ступени разделения определяется гидродинамикой потоков жидкости и пара, их взаимодействием, а следовательно, временем пребывания в аппарате. [c.86]

    Реактор идеального вытеснения. Математическое описание этого реактора можно получить из общих уравнений гидродинамики потока для случая идеального вытеснения (11,15) и (11,21), если подставить в них соответствующие выражения для интигсивностей истич[гиков массы и тепла. Интенсив1/ость указанных источников, как и для рассмотренно1 о реактора идеального смешения, определяется скоростью химической реакции и теплопередачей. [c.83]

    На скорость химических реакций могут влиять такие факторы, как гидродинамика потока, состояние поверхности раздела фаз, присутствие посторонних примесей, а также факторы, определяющие равновесие реакций температура, давление и относительные концентрации реагирующих веществ. Вследствие сложности рассматриваемой проблемы до сих пор еще не только не создана соответствующая теория, но даже не найдено какое-либо корреляцион ное соотношение данных, позволяющее теоретически предсказывать хотя бы порядок величин скорости промышленных реакций. В каждом новом случае приходится поэтому прибегать непосредственно к опыту, зачастую во всем интервале рабочих условий (правда, иногда возможна теоретическая экстраполяция опытных данных). [c.13]


    Оптимизация циркуляционных емееителей. При выборе оптимальных конструктивных размеров смесителя и его режима работы используют в основном метод физического моделирования. Число вариантов исполнения лабораторной модели объемом 5—6 л обычно небольшое от 2 до 5. Режимные и конструктивные параметры лабораторных смесителей из-за трудоемкости и высокой стоимости их изготовления и проведения экспериментов, как правило, изменяют в узких диапазонах. В моделях смесителей малого объема влияние пристеночных эффектов на гидродинамику потока частиц внутри смесителя велико. В промышленных смесителях эти эффекты в значительной мере ослаблены. Это усложняет поиск масштабных переходов от лабораторной модели к промышленному образцу смесителя. По этим причинам метод физического моделирования смесителей сыпучих материалов при разработке методики их оптимизации неэффективен. [c.238]

    Преимущество рассматриваемого типа абсорбера перед колонной с орошаемой стенкой заключается в том, что путь поверхности жидкости здесь достаточно короток, чтобы волнообразование отсутствовало без всякого специального добавления поверхностно-активных веществ. В то же время концевые эффекты малы, поскольку они ограничены лишь опорным стержнем и не оказывают воздействия на течение жидкости по основной поверхности. Анализ экспериментальных результатов достаточно прост, если растворяемый газ не взаимодействует в растворе (как рассмотрено выше) или вступает в мгновенную реакцию псевдопервого или псевдо-т-огр порядка [см. уравнение (111,17) или раздел П1-3-5], вследствие чего скорость абсорбции одинакова во всех точках поверхности. В других случаях анализ скорости абсорбции затруднен из-за сравнительной сложности гидродинамики потока по шаровой поверхности. Приближенное решение для умеренно быстрой реакции первого порядка было получено Дж. Астарита [c.87]

    По типу математического описания математические модели реакторов могут быть классифицированы по двум группам ква-зигомогенные и гетерогенные модели, что зависит от того, учтено или не учтено в моделях влияние процессов массо- и теплопередачи между фазами. Внутри каждой группы уравнения материальных и тепловых балансов записываются в соответствии с принятой моделью гидродинамики потоков. [c.234]

    Особый интерес представляет вопрос о гидродинамике потока в неподвижных насыпных слоях тел, применяемых в химических, металлургических, газоочистных и других аппаратах различного технологического назначения. Этому вопросу посвящено большое число теоретических и экспериментальных работ. В частности, гидродинамические модели движения жидкости через пористые насыпные слои были предложены В. П. Мяс-никовым и В. Д. Котелкиным [80, 98], А. М. Вайсманом и М. А. Гольдштиком [23]. [c.12]

    Кириллов Б. А., Матрос Ю. Ш., Слинько М. Г. Исследование гидродинамики потока в слое н( пористых частиц. — В кн. . Моделирование химических реакторов, Новосибирск — Киев ИКСОЛНСССР, 1970, ч. И, с. 160—174. [c.340]

    Говоря о скорости потока в зернистом слое , часто имеют в виду совершенно различные величины эта неопределенность связана с тем, что имеется несколько уровней и способов усреднения скорости потока. Самое детализированное описание гидродинамики потока дает задание истинных локальных скоростей в каждой точке свободного объема зернистого слоя. Истинная локальная скорость потока обращается в нуль у поверхности твердых частиц. При скоростях потока, обычных для промышленных каталитических процессов, близ твердой поверхности наблюдается резкий перепад скорости, сосредоточенный в тонком гидродинамическом пограничном слое, толщина которого мала по сравнению с характерным размером твердых частиц или промежутков между ними. Поле истинных локальных скоростей близ твердой поверхности определяет скорость иассо-и теплообмена между потоком и поверхностью твердых частиц (см. главу 1П). Влияние распределения истинных локальных скоростей потока близ твердой поверхности на процессы переноса в слое в целом сказывается лишь в том, что участки близ твердой поверхности, где скорость потока близка к нулю, могут играть роль застойных зон , в которых происходит задержка и накопление вещества, распространяющегося по слою с движущимся потоком. Особенно сильные застойные эффекты должны наблюдаться в областях близ точек соприкосновения твердых частиц (рис. VI.4). Эти области эквивалентны узким и глубоким каналам турбулентные пульсации в них не проникают, истинная локальная скорость потока близка к нулю, и перенос вещества осуществляется только с помощью медленного процесса молекулярной диффузии. [c.215]

    Гидродинамика потока в активной фазе подобна гидродинамике всего потока в критической точке перехода от неподвижного слоя к кипящему. В первом приближении можно предполагать, что скорость потока в активной фазе равна критической екорости м р, а весь избыток газа сверх необходимого для начала псевдоожижения проходит сквозь слой в пузырях (в пассивной фазе). При этом доля газа, проходящего в активной фазе, равна (если и — скорость всего потока газа)  [c.311]

    Следует отметить, что на практике приходится сравнивать не только простейшие и сложные поверхности, но и различные сложные, так как поиск высокоэффективных поверхностей может идти и в этом направлении. При подходе, который предлагается в [11], простейшая (эталонная) поверхность выступает в роли буферной , лишь усложняя оценку поверхностей. При этом пропадает абсолютный характер сравнения, который, как указывают авторы, для эталонной поверхности основан на хорошо известном характере закономерностей по геало-обмену и гидродинамике потока. [c.13]

    В идеальном случае предполагается равномерное распределение скоростей и давлений вдоль мембраны. Однако на практике в зависимости от расходов и давлений такое предположение чаще всего является достаточно грубым приближением, и необходимо учитывать реальное распределение параметров. Поэтому полное математическое описание мембранного процесса разделения должно учитывать, по крайне мере, кинетику массоиереноса через мембрану с учетом взаимовлияния отдельных компонентов, гидродинамику потоков (профиль скоростей и давлений) со стороны высокого и низкого давлений, условия равновесия фаз (соотношение компонентов между полостями высокого и низкого давлений), геометрию разделительных элементов (плоские или цилиндрические мембраны.). [c.89]

    Алгоритмизация этого этана состоит в разработке математических моделей типовых процессов химической технологии. Необходимо не только качественное, но и количественное описание явлений, определяющих процесс. К настоящему времени известно большое количество алгоритмов расчета типовых процессов, отличающихся степейью детализации отдельных составляющих модели, но, по сути, предназначенных для решения систем уравнений материального и теплового балансов, нельнейность которых зависит от точности описания равновесия, химической кинетики, кинетики тепло- и массопереноса, гидродинамики потоков. Объем входной информации зависит от точности модели, однако выходная информация подавляющего большинства алгоритмов практически одинакова профили концентраций, потоков и температур по длине (высоте) аппарата, составы конечных продуктов. Правда, соответствие результатов расчета реальным данным будет определяться тем, насколько точно в модели воспроизведены реальные условия. И все же, несмотря на обилие алгоритмов, нельзя сказать, что проблема разработки моделей (и соответственно расчета) решена — по мере углубления знаний об объекте модели непрерывно совершенствуются. Тем более что до сих пор в определенном классе процессов отсутствуют алгоритмы, обеспечивающие получение решения в любой постановке задачи и обладающие абсолютной сходимостью. Надо учесть еще, что задача в проектной постановке часто решается как задача оптимизации с использованием алгоритмов в проверочной постановке. [c.120]

    Итак, алгоритмизация этапа технологического расчета единяц оборудования состоит в разработке соответствующего математического описания, выборе метода решения системы уравнений этого описания, определении параметров, установлении адекватности модели реальному объекту, т. е. в разработке математической модели объекта. Независимо от функционального назначения элемента схемы математическая модель должна строиться по модульному принципу, причем таким образом, чтобы можно было иметь возможность при необходимости достаточно легко внести нужные изменения (дополнения или расширения функций) в модель без ее значительной переработки. Основная функция модели состоит в сведении материального и теплового балансов — получении выходных данных потока по входным. В зависимости от назначения математического описания отдельных явлений процесса (фазовое и химическое равновесие, кинетика массопередачи, гидродинамика потоков и т. д.) общее математическое описание может быть существенно различным. Важно при создании модели не нарушать общей ее структуры, т. е. иметь возможность использования единых алгоритмов решения. [c.141]

    Принимаемые допущения относительно гидродинамики потоков в массообменных элементах обусловлены теми моделями структуры, которые используются в данной модели. К наиболее распространенным моделям относятся смешение, вытеснение и диффузионная. Часто оказывается удобнее вместо диффузионной использовать ячеечную исходя из простоты ее машинной реализации. На основе указанных можно использовать любую их комбинацию, получая комбинированные модели, которые позволяют более полно отразить реальную структуру потоков, а именно зоны смешения, вытеснения, байпасирования, каналообразова-ния и т. д. Принятие той или иной модели имеет целью внесение поправки на оценку эффективности контакта фаз. Наиболее распространенные модели тарельчатых аппаратов и формулы для определения матриц коэффициентов эффективности приведены в гл. 4. [c.317]

    Кинетика массопередачи и гидродинамика потоков. Массопе-редача в многокомпонентных системах является одним из вопросов, которому уделяется, особенно в последнее десятилетие, огромное внимание [61—63]. И тем не менее до сих пор отсутствуют алгоритмы, позволившие бы перейти к точному расчету ректификационных колонн на основе кинетических представлений. При математическом описании межфазного массообмена движущую силу процесса принято выражать чзрэз разность концентраций, а кинетику — через коэффициент массопередачи [64]. [c.343]

    Вместе с тем ректификация остается доминирующим процессом разделения, и задача снижения энергозатрат должна решаться повышением эффективности ее работы. На стадии проектирования необходимо иметь более точные данные по нарожидкостному равновесию, по кинетике массопередачи и гидродинамике потоков с тем, чтобы проектировать процесс с меньшими запасами по флегме, поверхности теплообмена, высоте аппаратов. [c.487]

    Основой для составления математического описания реакторного процесса являются уравнения, описывающие гидродинамику потоков перерабатываемых и получаемых продуктов. В зависимости от этого и классифицируются реакторы по типам. По двум основным моделям потоков различают два типа реакторовг реактор идеального перемешивания и реактор идеального вытеснения. При выборе модели потока учитываются следующие факторы [5] модель должна отражать физическую сущность реального потока при относительной простоте математической формулировки должен существовать метод либо экспериментального определения параметров модели, либо аналитического их расчета структура потоков должна быть удобна для расчета конкретного процесса. [c.21]


Смотреть страницы где упоминается термин Гидродинамика потоков: [c.127]    [c.128]    [c.372]    [c.141]    [c.29]    [c.241]    [c.242]    [c.140]    [c.141]    [c.93]    [c.95]    [c.109]    [c.315]    [c.388]    [c.443]    [c.118]   
Введение в теорию и расчеты химических и нефтехимических реакторов Изд.2 (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гидродинамика



© 2025 chem21.info Реклама на сайте