Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испытания

    Тн абсолютная температура в оборудовании в начале и в конце испытаний. К. [c.42]

    Способы приготовления и составы катализаторов сильно отличались. Синтез велся в одну ступень без циркуляции. Температура синтеза 200° и максимальная 225°, да вление 10 ат, состав синтез-газа 1,25 Нг 1,0 СО с 12% инертных компонентов. Объемная скорость составляла 105—ПО объемов на объем катализатора в час, т. е. была примерно такой же, как и при синтезе над кобальтовым Катализатором. Использованные для испытаний катализаторы могут быть разделены на катализаторы на носителе и на катализаторы без носителя. Катализаторы первого типа аналогичны кобальтовым с той разницей, что на носитель, например кизельгур, наносится вместо кобальта железо. Они имеют значительно меньший насыпной вес, чем катализаторы без носителя. [c.113]


    Результаты сравнительных государственных испытаний шести железных катализаторов [c.115]

    Условия испытаний давление газа — 10 ата, максимальная температура —225°, работа катализатора — 3 месяца без перерыва, 1 ступень, на водяном газе состава СОг-б,2о/ СО-39,2о/о Нг-48,8о/ СН4-2,8о/ N2-3,2 /o СО+Н - 88,0%  [c.115]

    Другой метод испытания стабильности основывается на нагреве хлористого алкила в пробирке без добавок или в виде раствора в ксилоле при 100°. В пробирке подвешивают полоску индикаторной бумаги, смоченной красителем конго. Полоска индикаторной бумажки с течением времени начинает синеть снизу вверх. В зависимости от стабильности хлорированного парафина изменение окраски (происходит быстро или в течение нескольких дней, а при весьма стабильных продуктах вообще не наблюдается. Наибольшую стабильность обнаруживает хлорированный когазин П. Нефтяные фракции и фракции продуктов гидрогенизации каменного угля или смол полукоксования бурых углей, наоборот, образуют при хлорировании весьма нестабильные продукты. [c.251]

    У нижнего конца кварцевой трубки в ходе процесса можно отбирать пробы. Когда определение гидролизующегося хлора титрованием пробы покажет, что желательная степень превращения уже достигнута, то реакцию прекращают, содержимое трубки спускают и перерабатывают. Такая установка пригодна также и для испытания небольших количеств других органических веществ в отношении их способности к сульфохлорированию. [c.399]

    Результаты испытания могут быть представлен в виде графика, позволяющего сравнивать между собой топлива различного, фракционного состава (рис. 5). [c.23]

    Давление насыщенных паров топлив по ГОСТ 1756—52 определяется при температуре 38° С и соотношении паровой и жидкой фаз 4 1 в приборе, схема которого изображена на рис. 8. Прибор представляет собой стальную бомбу, которая состоит из двух камер, причем объем нижней в 4 раза меньше объема верхней. При испытании нижнюю камеру заполняют испытываемым топливом и на нее навинчивают верхнюю камеру, снабженную манометром. Собранный прибор погружают в ванну с жидкостью, в которой поддерживается постоянная температура. После того, как показания манометра перестанут изменяться, берут последнее показание манометра и, внеся поправку на изменение давления воздуха от температуры, получают давление насыщенных паров топлива. [c.24]

    Испытание проводят следующим образом в тщательно промытые, высушенные и взвешенные стаканы отмеривают по 25 мл испытуемого топлива и ставят стаканы в карманы бани, нагретой до установ- [c.27]

    Коррозионные свойства. Углеводородная часть современных нефтяных авиационных топлив практически не вызывает коррозии металлов и сплавов. Коррозионная агрессивность обусловливается главным образом присутствием в топливе таких веществ, как сера, сернистые соединения, органические кислоты, вода, азотистые соединения и др. Коррозионная агрессивность топлива зависит от его стабильности. Малостабильные топлива, как правило, более коррозионно активны. Коррозионные свойства оцениваются по следующим показателям испытанию на медной пластинке, количеству серы и сернистых соединений в топливе, органической кислотности. [c.31]


    Испытание на медной пластинке по ГОСТ 6321—52 производят следующим образом пластинку из чистой электролитической меди стандартных размеров выдерживают в топливе в течение трех часов при 50° С, затем ее поверхность сравнивают с цветом пластинки, не подвергавшейся испытанию. Появление на пластинке черных, темно-коричневых или серо-стальных налетов и пятен указывает на содержание в топливе активных сернистых соединений, способных вызывать коррозию. При отсутствии изменения цвета пластинки топливо считается выдержавшим испытание. [c.31]

    Проф. Я- Б. Чертковым с сотрудниками разработан прибор, на котором можно оценивать нагарообразующую способность топлив при различных режимах горения, характеризуемых коэффициентом избытка воздуха от 0,5 до 4,5. Расход топлива на одно определение — 1—3 мл. Продолжительность испытания — 30 мин. [c.35]

    Наиболее приемлемый способ оценки противоизносных свойств топлив — это испытание их на специальных лабораторных установках или полностью имитирующих работу топливной системы летательного аппарата, или имитирующих основные процессы, происходящие в трущихся деталях. Имитация топливной системы или ее части приводит к значительному усложнению лабораторных установок, к увеличению времени испытания и количества топлива на одно испытание. [c.36]

    Более правильно первый этап испытаний противоизносных свойств топлив проводить на сравнительно простых лабораторных установках, имитирующих основные процессы трения и износа. 36 [c.36]

    В процессе испытания регистрируется температура топлива. По результатам испытаний определяется зависимость износа образца от контактных напряжений, температуры топлива и скорости качения. [c.38]

    Прежде всего необходимо было выяснить, насколько отличаются между собой топлива различных типов, например Т-1, ТС-1, Т-7, но рекомендованных для одних и тех же летательных аппаратов. Оказалось, что в одних и тех же условиях испытания эти топлива существенно различаются между собой по противоизносным свойствам. [c.62]

    На рис. 34 приведены результаты испытаний топлив ТС-1, полученных из нефтей разных месторождений. Как видно, топлива значительно отличаются по своим противоизносным свойствам как при испытании их в лабораторных условиях по показателю К (рис. 34, а), так и при испытании на стендах (рис. 34, б). Следует отметить очень хорошее совпадение результатов лабораторных испытаний со стендовыми. [c.63]

    Результаты испытаний углеводородных смесей при трении скольжения представлены на рис. 38. Противоизносные свойства углеводородов значительно меняются в зависимости от того, присутст-66 [c.66]

    Для того чтобы изучить влияние на противоизносные свойства топлив условий испытания, были проведены специальные опыты. На рис. 39 показана зависимость противоизносных свойств топлив от контактных нагрузок. С увеличением контактных нагрузок износ увеличивается, а при достижении определенной нагрузки при трении скольжения происходит схватывание металлов с резким возрастанием износа. При трении качения износ прямо пропорционален нагрузке, если только эта нагрузка не вызывает заметных пластических деформаций поверхностных слоев металлов. [c.67]

    Испытание на медной пластинке при 100°С в течение 3 ч. ............ [c.86]

    В настоящее время оценка детонационной стойкости бензинов основана на принципе сравнения их с эталонными топливами при испытании тех и других на специальных одноцилиндровых установках в строго определенных стандартных условиях. Применяются два типа установок установки с переменной степенью сжатия (моторный, температурный, исследовательский) и установки с переменной степенью наддува (авиационный метод с наддувом). [c.99]

    Октановым числом бензина называется процентное (по объему) содержание изооктана в смеси с нормальным гептаном, эквивалентное по своей детонационной стойкости (в стандартных условиях испытания) испытуемому топливу. Так, например, если октановое число бензина 70, то это означает, что топливо детонирует так же, как смесь 70% изооктана и 30% гептана. [c.100]

    Авиационный метод. Испытание топлив по этому методу производится на специальных стандартных одноцилиндровых двигателях ИТ-9-1 с постоянной степенью сжатия е = 7. Детонационный режим установки достигается изменением наддува двигателя. Интенсивность детонации устанавливается специальными приборами, которые улавливают характерные для детонации вибрации стенок цилиндра. [c.101]

    Испытания на медной пластинке Выдерживают  [c.106]

    История развития жидкостных ракетных двигателей в значительной мере представляет историю поисков и испытаний веществ, пригодных для сжигания в двигателе и обеспечивающих его эффективную работу. Топлива для жидкостных ракетных двигателей должны обеспечивать легкий запуск, устойчивое сгорание, эффективное [c.117]

    При трении металлов их поверхностные слои разогреваются до значительных температур. Количество тепла, выделяющегося при трении, зависит от скорости скольжения, нагрузки на трущиеся поверхности, свойств металлов, из которых изготовлены детали и свойств смазки. При увеличении скорости скольжения или нагрузки увеличивается количество тепла, выделяемого в процессе трения, — повышается температура граничной пленки масла. При достижении критической температуры, характерной для каждого сорта смазки, граничная пленка теряет смазывающую способность. Происходит разрыв граничной пленки и резко увеличивается износ металлов. При постоянных значениях нагрузки и скорости скольжения аналогичная закономерность получается при повышении внешней температуры испытания, что видно из рис. 70 и 71. [c.132]


    Наиболее распространенным способом оценки смазывающей способности масел являются механические испытания на приборах и машинах трения. К сожалению, несмотря на большое многообразие машин и приборов трения, до сих пор ни одна из них не получила общего признания в качестве стандартного прибора для оценки смазывающей способности масел. В существующих приборах и машинах трения смазывающая способность масел оценивается по различным показателям величине коэффициента трения, предельной нагрузке, которая вызывает заедание трущихся поверхностей, температуре подшипника, величине износа трущихся деталей и др. Наиболее распространенной машиной для определения смазывающих свойств масел в условиях больших контактных нагрузок при трении твердых стальных поверхностей является четырехшариковая машина. [c.159]

    Моющие свойства это способность масла удерживать в себе смолистые продукты, препятствуя их отложению на деталях двигателя. Моющие свойства масел определяют при испытании их на установке ПЗВ (Папок, Зарубин и Виппер) по ГОСТ 5726—53. Схема установки показана на рис. 90. На этой установке, создавая электронагревательными устройствами требуемый температурный режим, производится испытание 250 мл масла в течение 2 ч. После окончания испытания установку разбирают, снимают цилиндр и [c.163]

    Если тэипаратура и барометрическое давление в начале и в конце испытания практически одинаковы, то [c.42]

    Во время второй мировой войны вследствие дефицита кобальта над проблемой замены кобальта, на железо в синтезе Фишера — Тропша работали многие фирмы. В 1943 г. исследования продвинулись настолько, что на заводе в Шварцхайде были проведены трехмесячные промышленного масштаба испытания шести различных катализаторов на основе железа с целью выбора катализатора с наибольшей удельной производительностью. Испытания велись в условиях синтеза среднего давления на кобальтовом катализаторе с тем, чтобы была обеспечена возможность прямого перехода с кобальтового катализатора на железный без изменения условий синтеза. Результаты этих опытов, имевших большое значение для последующей разработки процесса, будут подробно изложены в последующем. [c.68]

    Разработка железных катализаторов синтеза по Фишеру—Тро пшу и соответствуюшей технологии синтеза осуществлялась в годы второй мировой войны рядом германских фирм. В 1943 г. для выбора катализатора, который был бы наиболее. пригоден для замены кобальтового, на заводе Руланд—Шварцхайде были проведены трехмесячные испытания шести различных железных катализаторов, результаты которых имели большое значение для дальнейшей их разработки. [c.113]

    Из сказанного видно, что в зависимости от того, какой взят амин, какова длина цепи сульфохлорида, взятого в качестве исходного материала, и каково строение галоидкарбоновой кислоты, возможно огромное. количество комбинаций. Поэтому при решении вопроса о том, какая из комбинаций должна быть в данном случае практически применена, необходимо соответствующие комбинации подвергнуть тщательному испытанию с точки зрения требований прикладной техники. [c.423]

    Для определения количества фактических смол по ГОСТ 8489—58 (метод Бударова) применяется прибор, схема которого показана на рис. 12. Измерительным цилиндром отмеривают дистиллированную воду и наливают ее в стаканы для воды (при испытании бензинов — 25 мл, при испытании керосинов — 35 мл). Отмеривают по 25 мл бензина или по 30 мл керосина и заливают в стаканы, которые ставят в карманы бани, нагретой до установленной температуры (для бензинов — 160° С, для керосинов — 180° С). Выпаривание проводится под струей водяного пара. После полного выпаривания топлива стаканы охлаждают и взвешивают, затем расчетным путем определяют количество фактических смол. Результаты определения фактических смол выражают в л1г/100 мл топлива. [c.28]

Рис. 15. Принципи-альная схема установки с топливным насосом турбореактивного двигателя для испытания топлива циркуляционной прокачкой Рис. 15. <a href="/info/3403">Принципи</a>-альная <a href="/info/93822">схема установки</a> с топливным насосом <a href="/info/846296">турбореактивного двигателя</a> для испытания топлива <a href="/info/159108">циркуляционной</a> прокачкой
    НИЧНОГО трения вязкость и противоизносные свойства не всегда являются тождественными понятиями. Для того чтобы экспериментально показать это, мы взяли несколько топлив различной и близкой вязкости и испытали их на лабораторных установках. Результаты испытаний представлены на рис. 35. Как видно, топлива одного уровня вязкости могут в десятки и сотни раз отличаться друг от друга по противоизносным свойствам и, наоборот, топлива могут обладать практически одинаковыми противоизносными сврйствами, но значительно отличаться по уровню вязкости. Этими же экспериментами убедительно показано и то, что на лабораторных установках воспроизводится граничный, а не гидродинамический режим трения. [c.64]

    Углеводороды, входящие в состав авиационных топлив, разделяются на алканы нормального строения и изостроения, нафтены и ароматические (см. гл. 1). Исследование противоизносных свойств отдельных групп углеводородов проводилось при испытании смеси индивидуальных углеводородов равной вязкости. Алканы нормального строения были представлены смесью пентадекана с н-гепта-ном, нафтены — смесью циклогексана с декалином, ароматики — смесью изопропилбензола с а-метилнафталином. Вязкость каждой смеси была подобрана равной 1,5—1,6 сст при 20° С. [c.66]

    Результаты испытаний этих присадок приведены на рис. 42. Все присадки обладают в той или иной степени противоизносными свойствами. Наиболее эффективными оказались антистатическая присадка Акор-1, противоизносные присадки ПМАМ-2 и ТП. Эффективность присадки зависит от ее концентрации в топливе. Для некоторых присадок (ТП, ПМАМ-2) э( )фективность их действия воз- [c.69]

    Величина сортности для эталонных топлив установлена опытным путем при испытании их на одноцилиндровых установках с различными цилиндрами серийных авиационных двигателей. При этих испытаниях на каждом эталонном топливе путем увеличения наддува двигатель доводили до появления детонации и замеряли мощность, которая по существу являлась максимально возможной для каждого эталона. Мощность, полученная при работе на чистом эталонном изооктане, принята за 100% смеси же изооктана с тетраэтилсвинцом позволяли снимать большую дющность, причем с увеличением концентрации тетраэтилсвинца возрастала и величина максимально возможной мощности. Было установлено, что чистый изооктан имеет-сортность 100, изооктан с концентрацией тетраэтилсвинца 0,76 лл/кг имеет сортность 130 и т. д. (см. рис. 54). [c.102]

Рис. 71. Зависимость диаметра пятна износа от температуры, полученная при испытании на четырехшариковой машине трения (I/ = 0,4 м1сек, д—31500 кГ/см ) Рис. 71. Зависимость <a href="/info/477002">диаметра пятна</a> износа от температуры, полученная при испытании на четырехшариковой машине трения (I/ = 0,4 м1сек, д—31500 кГ/см )

Смотреть страницы где упоминается термин Испытания: [c.41]    [c.41]    [c.41]    [c.42]    [c.42]    [c.412]    [c.33]    [c.38]    [c.63]    [c.66]    [c.67]    [c.101]   
Смотреть главы в:

От колбы до реактора  -> Испытания

Турбокомпрессоры -> Испытания

Технология переработки синтетических каучуков -> Испытания

Методы культуры клеток для биохимиков -> Испытания


Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень (1999) -- [ c.0 ]

Эксплуатация и ремонт компрессоров и насосов (1980) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]

Капельный анализ (1951) -- [ c.0 ]

Организация исследований в химической промышленности (1974) -- [ c.0 ]

Ремонт и монтаж оборудования химических и нефтехимических заводов Издание 2 (1980) -- [ c.0 ]

Ремонт и монтаж оборудования химических и нефтеперерабатывающих заводов Издание 2 (1980) -- [ c.0 ]

Производство сажи Издание 2 (1965) -- [ c.0 ]

Справочник механика химических и нефтехимических производств (1985) -- [ c.0 ]

Аминопласты (1973) -- [ c.0 ]

Основы техники безопасности и противопожарной техники в химической промышленности Издание 2 (1966) -- [ c.0 ]

Присадки к маслам (1968) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте