Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа скорости окисления двуокиси

    Рей и Огг рассчитали константу скорости 3 и константу равновесия Л равн- Концентрация окиси азота в этой системе очень низка. Схема реакции дает возможность предположить, что в этих условиях окисление окиси азота катализируется двуокисью азота. Считают [37], что обычный путь окисления окиси азота представляет собой одностадийный процесс 5. Однако, когда концентрация окиси азота достаточно низка и присутствует двуокись азота, стадия 3 может протекать быстрее стадии 5. Относительно функции двуокиси азота в стадии 3 возникает вопрос действует ли она как третье тело или же имеет место какой-то химический обмен Послед- [c.98]


    При окислении бензола в основном получались малеиновый ангидрид МА, окись и двуокись углерода и небольшие количества хинона и фенола. Как реакция общего превращения бензола, так и реакция превращения в малеиновый ангидрид были приблизительно реакциями первого порядка по бензолу в диапазоне от 0,9 до 1,9% мол. Время контакта варьировали, изменяя объемную скорость от 0,19 до 0,16 сек при постоянном объеме катализатора. Константы скорости первого порядка, вычисленные из этих данных, были приблизительно постоянными. Однако они показывали небольшое уменьшение с уменьшением скорости массопередачи. [c.209]

    Однако необходимо иметь в виду, что все эти заключения имеют лишь предположительный характер. Величину наклона Ь нельзя считать достаточным критерием для окончательного выбора между различными механизмами. Кроме того, в случае такого сложного процесса, каким является выделение кислорода, почти всегда имеется возможность для параллельного протекания нескольких стадий с близкими по величине константами скоростей. Так, опытные данные по выделению кислорода на свинце лучше всего согласуются с теорией замедленного разряда, однако не исключена возможность замедленного протекания стадии рекомбинации кислородных атомов. На это указывают, во-первых, изменение с плотностью тока содержания атомарного кислорода на поверхности свинцового электрода и, во-вторых, изменение скорости диффузии кислородных атомов через двуокись свинца. Другой стадией, параллельной с разрядом гидроксильных ионов и выделением кислорода, является образование окислов, состав которых зависит от плотности тока и потенциала электрода. Таким образом, создание теории кислородного перенапряжения немыслимо без учета реакций окисления поверхности анода. Образование окислов на аноде резко изменяет кинетику выделения кислорода и величину кислородного перенапряжения. Величина перенапряжения кислорода не только изменяется в широких пределах при переходе от чистой поверхности металла к окисленной, но и определяется природой самих окислов. Так, из данных табл. 44 следует, что переход от а- к -модификации двуокиси свинца уменьшает тафелевскую константу а более чем [c.389]

    Однако необходимо иметь в виду, что все эти заключения имеют предположительный характер. Величину наклона Ь нельзя считать достаточным критерием для окончательного выбора механизма. Кроме того, в случае такого сложного процесса, каким является электрохимическое выделение кислорода, почти всегда имеется возможность для параллельного протекания нескольких стадий с близкими по величине константами скоростей. Так, опытные данные по выделению кислорода на свинце лучше всего согласуются с теорией замедленного разряда, однако не исключена возможность замедленного протекания стадии рекомбинации кислородных атомов. На это указывают, во-первых, изменение с плотностью тока содержания атомарного кислорода на поверхности свинцового электрода и, во-вторых, изменение скорости диффузии кислородных атомов через двуокись свинца. Другой стадией, параллельной с разрядом гидроксильных ионов и выделением кислорода, является образование окислов, состав которых зависит от плотности тока и потенциала электрода. Таким образом, создание теории кислородного перенапряжения немыслимо без учета реакций окисления поверхности анода. Образование окислов на аноде резко изменяет кинетику выделения кислорода и величину кислородного [c.389]


    Формулы для расчета скоростей окисления кислородом окиси азота в двуокись азота, с указанием условий применимости этих формул, сведены в табл. 24. Члены 2а и Ь в этих формулах выражены в следующих единицах при различных значениях констант к  [c.110]

    Образование димера окиси азота — процесс обратимый, протекающий с выделением тепла. Следовательно, повышение температуры вызовет смещение равновесия этой реакции в левую сторону. При этом константа равновесия будет расти, а равновесная концентрация димера в газовой смеси будет понижаться. Скорость же дальнейщего окисления димера в двуокись азота [c.261]

    Это значит, что все полимерные материалы независимо от термодинамических констант процесса полимеризации после завершения процесса образования находятся в термодинамически неустойчивом состоянии. Однако, как уже отмечалось ранее, сама по себе термодинамическая возможность протекания какого-либо процесса (в данном случае разложения) еще не обусловливает определенных скоростей его протекания. В противном случае, например, все органические вещества давно бы превратились в двуокись углерода и воду. Все процессы окисления органических веществ протекают с. выделением тепла (уменьшением энтальпии) и увеличением энтропии системы. Они термодинамически выгодны при любых температурах. Однако скорости процессов окисления очень сильно зависят от температуры. При обычных тем пературах жизнедеятельности окисление с заметной скоростью протекает только в присутствии специальных катализаторов. [c.116]

    Это значит, что все полимерные материалы независимо от термодинамических констант процесса полимеризации после завершения процесса образования и удаления мономера, не вступившего в реакцию, находятся в термодинамически неустойчивом состоянии по отношению к своим мономерам. Однако, как уже отмечалось ранее, сама по себе термодинамическая возможность протекания какого-либо процесса (в данном случае процесса разложения) еще не обусловливает высоких скоростей протекания этого процесса. Если бы это было не так, то, например, все органические вещества давно бы превратились в двуокись углерода и воду. Все процессы окисления органических веществ протекают с выделением тепла (уменьшением энтальпии) и увеличением энтропии системы. Это значит, что они термодинамически выгодны при любых температурах. Однако скорости процессов окисления очень сильно зависят от температуры. Так, самопроизвольное термическое окисление органических веществ (включая полимеры) протекает с заметной скоростью при температурах выше 100 °С. При обычных температурах жизнедеятельности окисление с заметной скоростью протекает только в присутствии специальных катализаторов. [c.192]

    Окисление нафтохинона реакции (3) и (6). Иоффе и Шерман [81, 82] изучили окисление 1,4-пафтохинона на катализаторе из окиси ванадия, сульфата калия и силикагеля. Результаты показали, что от 50 до 70% нафтохинона превраш ается во фталевый ангидрид, а от 30 до 50% — в малеиновый ангидрид, окись и двуокись углерода. Наблюдаемая энергия активации составляет приблизительно 11,5 ккал/молъ, тогда как энергия активациц нафталина приблизительно равна 14 ккал/молъ. Однако при температурах от 350 до 400° С константа скорости окисления нафтохинона оказывается несколько ниже, чем константа скорости окисления нафталина до нафтохинона. [c.222]


Смотреть страницы где упоминается термин Константа скорости окисления двуокиси: [c.179]    [c.143]    [c.285]    [c.183]   
Химическая кинетика и расчеты промышленных реакторов Издание 2 (1967) -- [ c.0 ]

Химическая кинетика и расчеты промышленных реакторов Издание 2 (1967) -- [ c.0 ]

Химическая кинетика м расчеты промышленных реакторов Издание 2 (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Двуокись окисления

Константа скорости

Константа скорости окислени

Константы окисления

Скорость окисления



© 2024 chem21.info Реклама на сайте