Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разложение Н кинетика процесса

    На практике некаталитическое окисление в жидкой фазе применяют только при синтезе гидропероксидов и надкислот (поскольку последние способны к разложению под действием катализаторов). В этом случае кинетика процесса определяется такими элементарными стадиями  [c.363]

    Непрерывное коксование осуществляют при более высоких температурах (520—550 °С), чем замедленное коксование, и па поверхности контактов (коксовых частиц). Однако повышенная температура в зоне реакции еще не приведет к большей глубине разложения сырья, чем при замедленном коксовании. Особенность коксования на твердых теплоносителях — интенсивное испарение части исходного сырья без существенной деструкции, что, очевидно, должно привести к снижению выхода продуктов деструкции и уплотнения, протекающих в жидкой фазе. Деструкция в паровой фазе при непрерывных процессах коксования, в отличие от замедленного коксования, протекает с большей скоростью. В связи с этим конечная глубина разложения и выход продуктов определяются главным образом кинетикой процесса в паровой фазе, а влияние давления на показатели процесса более существенно, чем при замедленном коксовании. Деструкция в паровой фазе промежуточных фракций должна привести к повышенному газообразованию и увеличению в продуктах распада содержания непредельных соединений. [c.238]


    Экспериментальное исследование кинетики процессов, приводящих к взрывному разложению ATM интенсивно проводилось последние тридцать лет. В настоящее время исследованы зависимости пороговой энергии инициирования от длительности импульса, длительности задержки взрыва от плотности энергии импульса получены кинетические зависимости изменения оптической плотности, проводимости и люминесценции образцов в процессе инициирования. Несмотря на это дискуссионным остается вопрос не только о конкретном механизме инициирования ATM, но и о природе взрыва. Предлагаемые в литературе механизмы инициирования энергетических материалов электронным и лазерным импульсами базируются в основном на тепловой теории взрыва и не объясняют целого ряда экспериментально наблюдаемых закономерностей процесса. [c.89]

    Несмотря на широкое промышленное развитие процессов термического разложения нефтепродуктов, наши знания в области механизма термического распада и кинетики процессов термического разложения нельзя признать достаточно полными. Глубоко изучено лишь превращение простейших низкокипящих углеводородов. Сложность состава как исходного сырья, так и получаемых продуктов при превращении высокомолекулярных углеводородов ограничивает получение надежных экспериментальных данных. [c.42]

    При исследовании кинетики процесса предполагалось, что реакции дегидрирования этилена и разложения ацетилена протекают последовательно и их константы скоростей, подчиняющиеся закону [c.196]

    Если промышленный процесс оформлен как полностью непрерывный, т. е. с непрерывной подачей сырья и непрерывным выводом продуктов, изучение его в периодически действующем аппарате (например, в лабораторном кубе) может дать только приближенные данные о материальном балансе и качестве получаемых продуктов. Что же касается данных по кинетике процесса, т. е. получения зависимости глубины превращения сырья от температуры и времени, то эти сведения будут еще более условны. Последнее объясняется тем, что при периодическом процессе продукты непрерывно уходят из зоны реакции, а непрореагировавшее сырье вместе с продуктами первичного разложения и уплотнения остается в жидкости (в аппарате). При этом температурный режим и особенно время пребывания сырья в зоне реакции, как правило, не будут совпадать с заводскими и могут быть сопоставлены [c.59]

    К ВОПРОСУ О КИНЕТИКЕ ПРОЦЕССА ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ УГЛЕПЛАСТИКОВ [c.101]

    Для специалиста в области анализа следовых количеств оценка результатов анализа на основе линейной регрессионной зависимости является одним из обычных этапов работы. Примерами могут служить калибровочные кривые, изотермы адсорбции, кривые, отражающие кинетику процессов, скорости, реакций разложения или элиминирования. [c.49]


    M. B. a Л ь к o, В. Б. Н e с т e p e н к о, Г. В. Н и ч и п о р, В. К. Федосова. Термическое разложение N 04. Расчет кинетики процесса на 3B]V1. Тезисы докладов Всесоюзного симпозиума Диссоциирующие газы как теплоносители и рабочие тела энергетических установок . Минск, 1969, стр. 43. [c.195]

    Аппаратурное оформление и кинетика процесса регенерации растворов аминов. Разложение карбаматов и карбонатов, диффузия молекул СОа в жидкости к поверхности раздела фаз, переход ил в парогазовую фазу и диффузия молекул СОа в основную массу газа-сопровождаются испарением воды из раствора. Энергия активации реакции разложения карбаматов составляет [129] 115 кДж/моль (27,5 ккал/моль). [c.198]

    Литературные данные по кинетике процесса регенерации противоречивы. По мнению авторов работы [15], лимитирующей стадией является разложение сравнительно стойких химических соединений. По данным [108], разложение карбаматов протекает в основном достаточно быстро. К. п. д. тарелок имеют значения, близкие для процессов, скорость которых контролируется- диффузией в газовой фазе. Сделан вывод о том, что по крайней мере в исследованных условиях скорость массопередачи при десорбции СОа из раствора МЭА такова- же, что и при абсорбции хорошо растворимого газа. [c.198]

    Исследование в среде постороннего газа (см. рис. 27) [81]. Хорошо известно, что газ окружающей среды влияет на кинетику процесса. Поскольку заданная скорость разложения сохраняется, ускорение или замедление реакции сдвигает температуру разложения вещества. Этот эффект минимален для хорошо обратимых процессов со стабильной твердой фазой продукта реакции. [c.43]

    Для исследования кинетики процесса термического разложения нентакарбонила железа это уравнение удобно переписать в следующем виде  [c.76]

    Большое количество измерений энергии диссоциации связи было произведено Шпарцеы с сотрудниками [50] при пиролизе углеводородов, в быстропоточно систсме в присутствии значительного избытка толуола. Большая скорость потока обеспечивает отсутствие дальнейших реакций и, таким образом, кинетика процесса не искажается. Образующиеся свободные радикалы вступают в реакцию преимуш ественно с избыточным толуолом, что приводит к ингибированию радикальных цепей. С другой стороны, образующиеся радикалы бензила сильно стабилизуются резонансом и, следовательно, являются нереакционноспособными, подвергаясь только-димеризации. Характер реакции может быть проверен путем выделения дибензила и сопоставления количества его с выходом других продуктов реакции. Как и в случаях, указанных выше, наблюдаемая энергия активации приравнивается к энергии диссоциации изучаемой связи. Метод ограничивается соединениями с более слабой связью, чем связь С—И в толуоле, так как в противном случае реакция осложняется термическим разложением последнего. [c.15]

    В результате этого общая скорость полимеризации изменяется в той же последовательности. Значительное влияние на кинетику полимеризации оказывают продукты разложения инициатора — алкоголяты и гидроокись лития, причем степень влияния (ускоряющего или замедляющего), которое оказывают эти примеси на ход полимеризации, определяется строением исходного литийалкила и алкоголята. Продукты разложения в процессе хранения втор-бутиллития оказывают ингибирующее влияние на полимеризацию изопрена, способствуют повышению молекулярной массы и расширению ММР [40]. Добавка ерв-бутанолята лития к втор- [c.210]

    Непосредственное экспериментальное изучение кинетики тон или иной химической реакции только в исключительных случаях позволяет отнести ее к одной из указанных групп. Это удается сделать только для так называемых простык реакций, протекающих в одну стадию, уравнение которой совпадает со стехиометрическим уравнением реакции в целом (например, разложение и синтез иодистого водорода, разложение двуокиси азота и нитрозилхлорида и некоторые другие). Большинство же химических реакций является совокупностью нескольких последовательных (а иногда и параллельных) элементарных реакций, каждая из которых может принадлежать к любой из указан-ных выше кинетических групп. Это обстоятельство неизбежно осложняет кинетику процесса в целом, Б простейшем случае, f если одна из элементарных реакций протекает значительно Т> медленнее остальных, наблюдаемый кинетический закон будет соответствовать именно этой реакции. Если же скорости от-дельных стадий сравнимы, экспериментальная кинетика может быть еще более осложнена. [c.17]

    В Секторе нефтехимии проводились работы по уточнению ресурсов нефтехимического сырья на Украине, в частности по оценке содержания нормальных алканов и ароматических углеводородов в различных фракциях нефтей Украины, изучались теоретические основы карбамидной депарафинизации. В соавторстве с П. Н. 1 аличем, Л. А. Куприяновой, К. И. Патриляком и другими исследованы процесс клатратообразования, взаимодействие индивидуальных нормальных алканов С —С12 с карбамидом в широком диапазоне температур в разных средах, равновесие в системах карбамид — алкан — комплекс, термохимия ] оА[1глексов карбамида и кинетика процессов их образования и разложения. Открыто явление низкотемпературного гистерезиса, связанного с механизмом образования и разложения комплексов и термодинамическими характеристиками процессов перекристаллизации мочевины и адсорбции — десорбции включенного вещества. [c.13]


    Обработкой экспериментальных данных по кинетике процессов найдены константы реакций синтеза и разложения пантогама, получены уравнения скоростей образования и роста кристаллов. [c.163]

    Специальное исследование влияния сырья на кинетику процесса крекинга [801 в рамках треугольной схемы Уикмена [см. выражение (Н1-5)] показало, что константы скорости крекинга сырья и образования бензина существенно зависят от углеводородного состава сырья и, в частности, от отнощения ароматических (А) к нафтенам (Н). Так, для прямогонных газойлей константы скорости разложения сырья и образования бензина предлагается соответственно рассчитывать по формулам [c.91]

    Применение более низких величин энергий активации элементарных реакций развития цепей в прежних радикально-цепных схемах разложения этана не дает уже первого порядка для кинетики распада, хотя и сближает вычисленную и измеренную концентрации радикалов. После того, однако, как было показано, что реакция распада тормозится продуктами крекинга и скорость последнего описывается уравнением самозамедляющихся реакций <3), требование соблюдения первого порядка для кинетики процесса в целом, предъявляемое только к радикально-цепньш схемам, утратило смысл. Правильной является только та радикально-цепная схема распада, которая отражает самоторможение и удовлетворяет уравнению (3). [c.32]

    Функция Ху = / ) проходит через максимум, характерный для каждой кислоты, что свидетельствует о существенном влиянии на кинетику процесса pH среды. Количественно константа скорости разложения ксантогената целлюлозы в кислой среде описывается эмпирическим уравнением [c.318]

    Зависимость (8-3) не может, конечно, полностью описать все стороны весьма сложного процесса термического разложения органической массы природных топлив, однако она отражает суммарную кинетику процесса, связывая ее с основными определяющими факторами — температурой и временем. Необходимо отметить, что эта зависимость широко применялась и применяется большинством исследователей, занимавшихся изучением кинетики термолиза природных топлив (М. Ф. Струнников, 3. Ф. Чуханов, А. П. Кашуричев и др.). Различия у отдельных авторов в подходе к аналитическому описанию процесса заключаются главным образом в методах определения и трактовке величин, входящих в уравнение (8-3), в частности — значений и [c.179]

    Р е ш е к и е. Из табл. 8-3 принимаем, что кинетика процесса образования смолы определяется значениями Е = 2280 ккал/моль-, й,, = 72 60 = 1,2 сек -. Из табл. 8-4, считая, что кинетика процесса термического разложения смолы определяется значениями кинетических характеристик для фенола, получаем 0= 33 400 ккал/молъ, Аор= 3,16.10 сел -1. [c.199]

    При расчете процесса разложения апатита по второй технологической схеме с рециклом получили, что фазовые траектории лежа на странном аттракторе. На рис. 2 приведены фазовая траектория решения системы уравнений математической модели процесса получения ЭФК в десятисекционном экстракторе. Глобальный фазовый портрет второй технологической схемы напоминает странный аттрактор Лоренца. Видно, что фазовая траектория имеет два неустойчивых предельных цикла. Фазовые траектории, начинающиеся справа, накручиваются на правый предельный цикл, затем через некоторое время, осуществляя автоколебания, сдвигаются влево и накручиваются на левый предельный цикл. Через некоторое время начинается сдвиг вправо, и траектория вновь накручивается на правый предельный цикл и т. д. Наличие рецикла приводит к наложению на собственные автоколебания системы за счет обратной связи между механизмами разложения апатита и кристаллизации дигидрита сульфата кальция еще и колебаний, связанных с наличием цикла в экстракторе. Механизм колебаний за счет обратной связи по кинетике процесса был описан выше. Когда система, пройдя левый предельный циют, стремиться выйти на устойчивое положение - отрицательный режим по SO3, рецикл дает повышение концентрации SO3, что заставляет систему двигаться вправо, накручиваясь на правый предельный цикл. Затем система, проходя через правый предельный цикл, за счет образования пленки стремится ко второму устойчивому состоянию - повышению концентрации SO3 и понижению концентрации СаО, но рецикл приводит к понижению концентрации SO3, и фазовая траектория сдвигается влево. Было рассчитано, что странный аттрактор наблюдается при времени цикла в интервале 30-60 мин. При этом увеличение рецикла (время цикла менее 30 мин) приводит к уменьшению расстояния между предельными циклами, а уменьшение рецикла (время цикла более 60 мин) приводит к увеличению этого расстояния. Увеличение рецикла [c.44]

    Исследовано влияние характера среды а кинетику процесса термического разложения углепластиков в зависимости от вида связующего. Показано, что с переходом от инертной к окислительной среде кажущаяся внергия активации разложения снижается для углепластика-П и ирактически не меняется для углепластика-1. [c.155]

    ФАРАДЕЕВСКОГО ВЫПРЯМЛЕНИЯ МЕТОД, метод исследования механизма и кинетики процессов на фанице электрод - электролит. Основан на измерении эффектов нелинейности вольтамперной характеристики электрохим. системы. Вольтамперная характеристика, выражающая связь между напряжением и током, пропущенным через ячейку, м. б. представлена в виде разложения в стеленной ряд, при этом, как правило, Офаничиваются квадратичными членами (дифференциалами второго порядка). В регистрируемом отклике ячейки на воздействующий синусоидальный ток выделяют на той же частоте синусоидальное напряжение, отстающее от тока по фазе (амттлитуда и фаза характеризуют линейные параметры), и сигналы второго порядка малости постоянная составляющая, составляющая на еторой гармонике, составляющие комбинационных частот. [c.57]

    Точное рассмотрение кинетики процесса удаления сернистых соединений требует решения сложной системы дифференциальных уравнений. Предварительная оценка кинетики термообессерива-ния показывают, что ограничивающей стадией является разложение серауглеродного комплекса, которое может интенсифицироваться либо повышением температуры, либо подачей в зону реакции углеводородных газов [3, 4]. [c.225]

    Из большой величины константы следует, что разложение шеелита должно протекать полностью без избытка кислоты. Но необходимо учесть, то, что приближенная константа равновесия определялась в условиях герметичной шаровой мельницы. В условиях же открытого реактора с перемешиванием мешалкой шеелит разлагается с практически приемлемой полнотой (96—99%) лишь при значительном избытке кислоты против необходимого по реакции. Это объясняется тем, что пленки вольфрамовой и кремниевой кислот, отложившиеся на зернах шеелита, при перемешивании мешалкой удаляются с большим трудом, и реакция лимитируется малой скоростью диффузии раствора соляной кислоты через слой твердого вещества. Кроме того, из открытого реактора значительная доля кислоты непроизводительно теряется за счет испарения. Последнее исключается в замкнутом пространстве шаровой мельницы, шары которой интенсивно, как ужеупоминалось, удаляют вторичные пленки на зернах. В этом случае кинетика процесса определяется большей скоростью химической реакции. [c.259]

    Вне рассмотрения осталось второе возможное применение -термогравиметрии исиользование ее для кинетических исследований. Упомянутый в книге метод термического анализа с постоянной скоростью разложения (GRTA) обладает определенными преимуществами при изучении кинетики процессов разложения. Метод GRTA оказывается более чувствительным к определению вида кинетической функции ири решении обратной задачи, а традиционный в неизотермической кинетике метод линейного нагрева может дать высокую точность в расчете кинетических параметров, если кинетическая функция определена независимо. [c.103]

    Поведение фторфлогопита и его расплава при нагревании. Все приведенные выше данные относятся к попыткам оценить состав и давление газов, образующихся при разложении фторфлогопита, однако систематических исследований кинетики процесса разложения фторслюды в литературе нет. Максимальное газоотделе-ние фторфлогопита приходится на интервал температур 1200— 1350 С ( стадия предплавления ) [35]. Такое поведение вещества должно настораживать либо оно обладает специфическими физико-химическими свойствами, либо в методике измерения кроется принципиальная ошибка. В данном случае, как показали дальнейшие исследования, дело именно в методической ошибке. Измерение количества газа, выделившегося в данном температурном [c.55]

    С целью изучения кинетики процесса разложения фторслюды проведена серия экспериментов при температурах от 1300 до 1500 °С и давлении газа в реакционном объемеот 0,05 до 2,05 МПа в атмосфере аргона (водорода). В молибденовые тигли стандартного объема и с одинаковым зеркалом расплава 2 см помещали стандартную навеску из пластин фторфлогопита, полученного спонтанной кристаллизацией. Для сравнимости результатов использовался один больщой пакет фторслюды известного химического состава. Все эксперименты проводились в вертикальной щахтной печи сопротивления с вольфрамовым нагревателем (типа СШВ) при следующем режиме 1) ввод печи в режим до заданной температуры — 5—7 мин 2) выдержка при заданных температуре и давлении — 1 ч 3) охлаждение образца до кристаллизации расплава —не более 2 мин. Одновременно в установку помещались от пяти до десяти тиглей. Предварительно взвешивались тигли, навеска слюды и тигли вместе со слюдой. После термической обработки по указанному режиму тигли вновь взвешивались. Точность поддержания и оценки параметров температура 5 С, давление 0,05 МПа, масса 10 мг, время 30 с, площадь поверхности испарения 0,1 см . Скорость изменения массы образца определялась по формуле Ьр= т1—/П2)/5т, где Шх — масса тигля с навеской слюды до опыта /Пг — то же, после опыта 5 — площадь зеркала расплава, т — время. [c.56]


Библиография для Разложение Н кинетика процесса: [c.704]   
Смотреть страницы где упоминается термин Разложение Н кинетика процесса: [c.362]    [c.44]    [c.267]    [c.251]    [c.76]    [c.155]    [c.23]    [c.49]    [c.101]    [c.103]    [c.103]    [c.21]    [c.24]    [c.227]    [c.55]   
Перекись водорода и перекисные соединения (1951) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика процессов



© 2025 chem21.info Реклама на сайте