Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический обмен в ЯМР

    ЯМР-СПЕКТРЫ. Гидроксильный протон спиртов обычно дает синглет в области от 2 до 4 м. д. (шкала б). Этот сигнал у первичных и вторичных спиртов не расщепляется протонами, связанными с карбинольным атомом углерода, что обусловлено быстрым обменом протонов (эффект, называемый химическим обменом). Протон, оторвавшийся от гидроксильной группы, может заместиться либо протоном с аналогичной ориентацией спина, либо протоном с противоположной ориентацией спина. Такой обмен протона [c.422]


    Важно и то, что уравнения (11.70) и (11.71) можно распространить с различных химических (обменные, окислительно-восстановительные) реакций на другие процессы, в том числе на разнообразные равновесия в растворах и на фазовые равновесия в различных системах (см. с. 124). Ведь все они отвечают изобарно-изотермическому режиму. [c.122]

    Как можно отличить уширение спектральных линий, обусловленное релаксационными процессами, с одной стороны, и химическим обменом с другой. [c.126]

    Гидролиз солей. Реакция химического (обменного) взаимодействия растворенного вещества с растворителем носит общее название сольволиза. В том случае, когда растворителем является вода, мы говорим о гидролизе. Здесь мы встречаемся с обширной областью явлений, когда межчастичные взаимодействия адгезионного (стр. 99) или ионо-дипольного (стр. 80 ) характера переходят в химическое, сопровождающееся химическим изменением молекул воды. [c.214]

    Обменное расщепление. Отсутствие в спектре ЯМР спин-спинового взаимодействия с ядром, вовлеченный в химический обмен. При химическом обмене протон с определенной ориентацией спинового момента замещается протоном с противоположной ориентацией спинового момента. Если этот процесс происходит достаточно быстро, то его следствием будет упрощение сигнала протона (или протонов), который должен был бы взаимодействовать с таким обменивающимся протоном. Обменное расщепление особенно характерно для первичных и вторичных спиртов, изучаемых в растворителях со следами кислот (например, в хлороформе, содержащем незначительное количество соляной кислоты). [c.427]

    ХИМИЧЕСКИЙ ОБМЕН. Протоны, связанные с углеродом, ведут себя иначе, чем протоны, связанные с гетероатомами (например, кислородом). Важнейшие различия между ними заключаются в том, что протоны, связанные с гетероатомами, а) обмениваются между собой и б) подвержены эффектам, возникающим при образовании водородной связи. Остальную часть раздела мы посвятим этим вопросам, обратив особое внимание на обменные процессы. [c.565]

    Вероятно, наиболее интересны те случаи, когда NH-протоны испытывают медленный химический обмен. В таких системах (которые включают амиды и пирролы) спин-спиновое взаимодействие между NH и СН во фрагменте Н—С—N—Н можно наблюдать на сигнале СН. Однако в этих случаях не обнаруживается та четкая мультиплетная структура сигнала протона NH, которую можно было бы ожидать, принимая во внимание расщепление СН-сигнала. Вместо этого появляется уширенный сигнал NH. Причина уширения сигнала сложна, и мы на этом не будем останавливаться. [c.566]

    Изучение кинетики на спин-системах, включенных в химический обмен, определение скоростей обмена и времен спин-решеточной релаксации [c.333]

    Химический обмен в применении к разделению изотопов многих элементов, включая уран, исследуется уже довольно долго, В то время как этот метод был с успехом применен для разделения легких элементов, эффективность разделения урана оказалась слишком малой для практических целей. Однако (1977 г.) французский Комиссариат по атомной энергии (КАЭ) объявил о разработке перспективного способа разделения изотопов урана, основанного на химическом обмене. Изменение взглядов в этом вопросе связано с обнаружением реакции, дающей почти вдвое больший элементарный коэффициент обогащения по сравнению с ранее опубликованными данными [1.11]. [c.14]


    В рассматриваемом случае протон гидроксильной группы не вызывает дальнейшего расщепления линий спектра из-за быстрого химического обмена с протонами других молекул. Этот быстрый химический обмен происходит только в присутствии кислот, причем достаточно даже следов кислоты, чтобы расщепление исчезло. [c.507]

    Химическое обменное взаимодействие ионов растворенной соли с водой, приводящее к образованию слабодиссоциирующих продуктов (молекул слабых кислот или оснований, анионов кислых или катионов основных солей) и сопровождающееся изменением pH среды, называется гидролизом. [c.72]

    Кросс-пики обменного ЯМР-спектра связанной спиновой системы могут содержать вклады как от некогерентного переноса намагниченности, обусловленного случайными обменными процессами (химический обмен, молекулярная релаксация, молекулярная диффузия), так и от когерентного переноса намагниченности через пути скалярной связи [103, 108-111]. Было показано [103, 117], что побочное спин-спиновое взаимодействие приводит к появлению добавочных так называемых J-кросс-пиков в 2М обменном ЯМР-спектре. Действующий на спиновую систему 90°-й импульс ответственен за создание нуль-, одно-, двух- и многоквантовых когерентностей, другими словами, это перенос когерентностей между различными уровнями связанной спиновой системы. Третий 90°-й импульс преобразует все эти когерентности в наблюдаемую намагниченность. [c.104]

    Химические (обменные) методы получения калия основаны на вытеснении его натрием из расплавленных соединений. В основе процессов лежит равновесная реакция [c.241]

    Скалярная релаксация первого рода может давать существенный вклад в релаксацию, в частности, для протонов и ядер дейтерия, поскольку эти ядерные спины в большинстве случаев участвуют в быстром химическом обмене. Скалярная релаксация второго рода особенно существенна для спина ядра А, который связан со спином ядра X с1 >1, поскольку из-за наличия квадрупольного взаимодействия скорость релаксации для ядра X велика. [c.39]

    Какую биохимическую информацию можно извлечь из изучения процессов, связанных с химическим обменом В области быстрого обмена в [c.73]

    Измерения ЯЭО и химический обмен [c.93]

    Химические обменные процессы заметно изменяют ширину линий. Этот эффект также можно ослабить путем разведения. Если в обмене участвуют эквивалентные парамагнитные частицы, то линии уширяются у основания и становятся уже у центра. Если в обмене участвуют различные ионы, то отдельные линии сливаются и дают один сигнал, который может быть широким или узким в зависимости от скорости обмена. Такой эффект наблюдается для uS04-5H20, в элементарной ячейке которого имеются два различных центра меди [2]. [c.205]

    Установлено, что энергия активации вязкого течения увеличивается с понижением ПИ и роста СЭ соответствующих систем. На основании представленных результатов можно сделать неожиданный вывод, что вязкое течение полисопряженных ньютоновских углеводородных жидкостей связано с сильным химическим обменным взаимодействием или процессом переноса заряда. Таким образом, ньютоновское ючение жидкостей, содержащих п-электронные ароматические или непредельные соединения, связано с коллективным химическим взаимодействием частиц. Чем выше энергия химического взаимодействия молекулярных орбиталей, тем выше вязкость жидкости. Изложенное не прогиворе-чит существующим взглядам на природу жидкого состояния, как системы слабых химических связей [35] и решеточной теории растворов полимеров [c.102]

    Роль N02 в реакции (1.51), скорее всего, заключается в каком-то химическом обмене. Согласно Бенсону [131], реакция (1.51) протекает в две стадии. На первой стадии образуется периоксирадикал OгNO, на второй — нитрат-радпкал N03  [c.42]

    Подавление ииков предварительным насыщением. Обзор литературы по подавлению пиков содержал бы огромный список методов, поскольку эта область очень популярна среди экспериментаторов. Но, к счастью, это тот самый редкий случай, когда мы. можем одпозпачно утверждать, что одип из методов-предварительное насыщение-самый лучший. Однако т[ужио сразу добавить, что это верно только тогда, когда подавляемый пик не участвует в химическом обмене с другими интересующими нас сигналами. Предварительное насыщение в отсутствие химического обмена-лучший метод понижения иитенсивности сшналов в том смысле, чю оно сочетает в себе возможность значительного подавления сигнала с минимальным возмущением оставшейся части спектра. Нас интересуют два критерия насколько мы можем ослабить мешающий сигнал и что прн этом произойдет с остальными пиками. [c.247]

    Схема предварительного насыщеиня перестает работать, когда облучаемый сигнал участвует в химическом обмене с другими интересующими нас ядрами, на которые таким образом будет переноситься насыщение. Эта проблема часто возникает прн подавлении сигналов воды в водных растворах. Протоны воды неизбежно будут обмениваться с такими функциональными группами, как ОН и НН. Кроме того, если нам нужны именно их сигналы, то мы не можем использовать в качестве растворителя дейтерированиую воду. В результате предварительное насыщение неприменимо именно там, где оно больще всего нужно. В такой ситуации, очень часто встречающейся в биологических экспериментах, необходимо применять другие методы, не использующие облучешсе сигнала воды. [c.249]

    Осложнения, вызываемые неправильным использованием взвешивающих функций, проявляются в большей степени при использовании магнитудного представления нз-за того, что прн этом возникает необходимость сильною улучшения разрешения. Поскольку этот вопрос уже обсуждался ранее, я лшнь еще раз укажу, что это, iio-видимому, является наиболее общей причиной потери кросс-пика. Ядра, участвующие в химическом обмене (протоны NH илн ОН), вероятнее всего, могут попасть в ловушку такого типа. Подобные сигналы и в одномерных спектрах часто не обнаруживают констант. Для фазочувствительных спектров подбор параметров функции окна производится таким же образом, как н в одномерных спектрах, в зависимости от тот о, требуется ли улучшить отношение сигнал/шум или разрешение. Однако прн этом больше внимания следует обращать иа процедуру аподизацни. Это необходимо нз-за того, что ССИ с большой вероятностью обрезан (особенно по vj, а также в силу того, что в спектре, где есть как положительные, так н отрицательные сигналы, боковые лепестки, обусловленные неточной аподизацией сигнала, могут приводить к недоразумениям, особенно в случае контурного представления. [c.315]


    Конечно, химический обмен может происходить фактически с любыми скоростями. Очевидно, что с помощью NOESY можно изучать область медленного обмена. Основываясь на разности химических сдвигов обменивающихся ядер, мы можем оценить верхнюю границу его скорости. Для двухпозицнонного обмена с равными заселенностями и разностью их химических сдвигов Av прн коалесценции сигналов константа скоростн процесса равна Поэтому при медленном [c.343]

    Это особенно важно, когда в спектре появляются широкие линии (>50 Гц), так как их комбинация с частотно-зависимыми фазовыми сдвигами приводит к искажению базовой линии. Другое преимущество - это подавление более чем одной позиции путем разделения их по времении подавления по различным частотам. Однако в случае, когда гомоядерные эксперименты связаны с предварительным насыщением, возникает ряд проблем. Устройство развязки может возбудить мощный сигнал растворителя во время приема данных, если частота развязки будет близкой к частоте химического сдвига растворителя. Основным недостатком предварительного насыщения, как метода подавления интенсивных сигналов растворителя, является перенос насыщения от растворителя к обменивающимся протонам. Этот эффект может быть вызван либо химическим обменом, либо кросс-релаксацией. Интенсивность резонансных сигналов, способных к обмену, уменьшается, если скорость химического обмена или кросс-релаксации между ними и сигналами растворителя сравнима со скоростью их спин-решеточной релаксации в отсутствие обмена или кросс-релаксации. Для преодоления этих проблем был предложен метод, позволяющий выполнять экстраполяцию интенсивности пиков в отсутствие насыщенного сигнала растворителя. Эта методика основана на повторении эксперимента подавления сигнала растворителя с импульсами предварительного насыщения различной длительности. Взаимное насыщение уменьшается, если уменьшается мопщосгь импульсов предварительного насыщения. Трудность реализации этого метода состоит в том, что кратковременный импульс теряет свои селективные свойства. [c.12]

    Эксперименты 2М, использующие гауссовы импульсы, соответствуют постоянному значению переменной времении, а не версии с переменной из которой они выводятся. Предлагаемый метод обычно используется для достижения частотной селекции [13]. В отличие от полуселективного 1 М-эксперимента, частотная селекция в 2М-экспериментах с фиксированной координатой времении достигается в течение задержки посредством перемещения точки приложения 180°-го импульса, который вводит только фазовый коэффициент, обусловленный химическим обменом, для случая слабой связи, но сохраняет константу J и релаксационно-зависимые члены функции возбуждения неизменными. По аналогии с 2М-спек- [c.62]

    Таким образом, полученные 2М обменные спектры МСВ отражают лищь чисто химический обменный процесс в метаноле. [c.130]

    Кинетика ионного обмеца. При ионном обмене происходит перенос противоионов в фазе ионообменника и в растворе к границе раздела фаз и от нее. Переносу ионов в растворе к поверхности раздела фаз способствует перемешивание. Однако даже при самом эффективном перемешивании раствора зерно ионообменника окружено неподвижной жидкой пленкой раствора толщиной примерно 10 —10" см. Процесс ионного обмена между зернами ионообменника и хорошо перемешиваемым раствором сводится к трем последовательным стадиям диффузия обменивающихся противоионов через стационарную пленку, окружающую зерно ионообменника (пленка Нернста) диффузия их в зерне ионообменника химический обмен. Последняя стадия протекает практически мгновенно, поэтому ионный обмен рассматривают как чисто диффузионный процесс, скорость которого определяется самой медленной стадией либо диффузией в пленке (пленочная кинетика), либо диффузией в зерне (гелевая кинетика). [c.319]

    Химический обмен - один из наиболее наглядных примеров динамических процессов. Сущность этого явления ясна из интуитивных соображений. Под химическим обменом в общем случае понимают процессы, в которых спин ядра в процессе релаксации может находиться в состояниях, характеризуемых различным химическим окружением, что соответствует различным параметрам ЯМР. В основе изменения окружения ядерного спина может лежать внутримолекулярный процесс, такой, например, как изменение конформации, или же межмолекулярный процесс. Здесь можно рассматривать исследуемое ядро в новой ковалентной структуре или же, наоборот, включать в рассмотрение межмолекулярные взаимодействия тех молекул, которые содержат данное ядро, и таким образом учитывать изменение окружения данного ядра. В простейшем случае имеется только два различных состояния, которые отличаются по химическому сдвигу (5. Время корреляции здесь представлено временами жизни Гд и Гд в состояниях А л В соотвественно, а величина А О) непосредственно определяется разностью химических сдвигов А<5 = - <5д, измеренной в единицах частоты. В этом случае медленный обмен определяется неравенством [c.72]

    Аналогичный процесс усреднения происходит и в случае других взаимодействий. Если окружения, соответствующие двум состояниям АиВ, различаются только константами косвенного спин-спинового взаимодействия и /д, то наблюдается мультиплет с усредненной константой / = +pgJ до тех пор, пока для величины Aj = Ja в выполняется неравенство I Aj т 1 1 (константы J выражаются в единицах круговой частоты). Так как константы взаимодействия/, как правило, не коррелируют с разностью химических сдвигов, то в ряде случаев на основе этих констант должна быть установлена шкала времени, отличная от шкалы химических сдвигов. При наличии в спиновой системе взаимодействия, например косвенного спин-спинового, химический обмен ие поддается описанию с помощью простых уравнений Мак-Коннела [2.1 ]. Однако принципиально возможно описание поведения такой системы с привлечением квантово-механических подходов. [c.73]


Смотреть страницы где упоминается термин Химический обмен в ЯМР: [c.181]    [c.157]    [c.341]    [c.343]    [c.344]    [c.39]    [c.39]    [c.105]    [c.113]    [c.117]    [c.14]    [c.72]    [c.72]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.2 (0) -- [ c.565 ]




ПОИСК







© 2025 chem21.info Реклама на сайте