Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Корунд оптические свойства

    Структура аналогична структуре -глинозема. Оптические свойства САе близки к свойствам корунда, он кристаллизуется в виде однородных пластин с отрицательным удлинением. Ag является инертным минералом, при взаимодействии с водой не гидратируется, поэтому его наличие в цементе снижает прочность цементного камня. [c.145]

    Оптические свойства корунда характеризуются следующими цифрами показатель преломления обыкновенного луча по= 1,758, а необыкновенного луча 1,750, сила двойного лучепреломления Па—И(,= 0,008. Чистый корунд бесцветен. Примесь железа и титана окрашивает его в синий цвет (сапфир), примесь хрома окрашивает его в красный цвет (рубин). Корунд в электрокорунде иногда окрашен в слаборозовый, а иногда в голубой цвет. [c.221]


    Его оптические свойства 1.759 1,752 Па—n =0,007. Плавится он при 1850°, разлагаясь на корунд и жидкость. Плотность его 3,38+0,01 г см (по Торопову). [c.222]

    Анодные пленки, создаваемые на алюминии и его сплавах, обладают относительно высокими диэлектрическими свойствами. Диэлектрическая постоянная 2 для корунда вдоль главной оптической оси равна 11,42, нормально к ней — 13,19 [c.188]

    Наибольшей популярностью среди всех драгоценных камней уже многие столетия пользуется алмаз, особенно после того, как стала нэвестна бриллиантовая огранка алмаза, при которой наиболее ярко проявляются его оптические свойства. Прекрасны игра цветов и блеск алмаза, но все-таки наиболее замечательное его свойство — твердость и стойкость. Относительная твердость минералов обычно определяется по шкале Мооса, в основу которой положена способность минералов царапать друг друга. Шкала имеет градацию от 1 до 10 в соответствии с твердостью 10 минералов, которые приняты в качестве стандартов. В порядке возрастания твердости это тальк (I), гипс (2), кальцит (3), флюорит (4), апатит (5), полевой шпат (6), кварц (7), топаз (8), корунд (9), алмаз (10). Например, если камень царапается кварцем, но сам царапает полевой шпат, то его твердость 6,5. Стекло обычно относится к числу твердых материалов, однако его твердость всего лишь 5, а твердость медной монеты вообще только 3. Стекло легко царапается кварцем, так что если читатель сумел сделать царапину на окне, то это вовсе не значит, что в его руке алмаз. Однако в шкале Мооса не находит отражения уникальная твердость алмаза. По другой шкале, шкале Кноопа, алмаз более чем в 5 раз тверже сапфира (твердость 9), а сапфир только на 30% тверже топаза (твердость 8). Можно сказать, что алмаз в той же мере тверже стали, в какой сталь тверже масла. [c.61]

    Сапфир и шпинель слишком тусклые. ИАГ с его умеренно высокой дисперсией и средним показателем преломления еще недавно, в 70-х годах, пользовался успехом, компенсируя твердостью довольно скромные по сравнению с алмазом игру и блеск. ГГГ обладает лучшими оптическими свойствами и может с успехом использоваться в качестве драгоценного камня, но он значительно дороже ИАГ, поэтому едва ли сумеет завоевать благоприятную конъюнктуру на рьшке, потеснив позиции ИАГ или алмаза. Кажется, что наибольшую роль в торговле заменителями алмаза в качестве драгоценных камней играет кубическая окись циркония. Из числа давно употребляющихся синтетических камней позиции титаната стронция в торговле камнями наиболее стабильны, и он будет еще более популярным, если успешно решить проблему его твердости. Это возможно при использовании твердого покрытия, которое должно прочно соединяться с титанатом и не влиять на его блеск. Уже есть по крайней мере один патент [17], описывающий способ покрытия мягких драгоценных камней слоем корунда. Напыление осуществляется при 500° С из газовой фазы, богатой алюминием и кислородом, с последующим отжигом при 900—1000° С. Если такой процесс будет реализован в полной мере, это приведет к установлению умеренных цен на широко известные прозрачные драгоценные камни. Однако представляется маловероятным, что твердое кристаллическое покрытие будет прочно удерживаться на всех гранях без трещин и видимых дефектов. Практически высококачественное покрытие возможно только тогда, когда существует хорошее соответствие между атомами покрытия и обрабатываемого кристалла. Отсутствие камней с покрытием на ювелирном рынке является доказательством того, что успех в этом деле, по крайней мере для титаната стронция, еще ие достигнут. Тем не менее в [c.106]


    Наиболее богатый глиноземом алюминат СаО-бАХ Од был синтезирован Н. А. Тороповым (1939 г.) и обнаружен в плавленом корунде Н. Е. Филоненко. Его оптические свойства, плотность и способность к катионному обмену описаны М. М. Стукаловой и Н. А. Тороповым. [c.260]

    При сравнении оптических свойств и молярного объема чистой кристаллической окиси алюминия а-АЬОз (корунда) с соответствующими парциальными свойствами окиси алюминия в стекле, содержащем щелочи, выявляется, что между ними существует резкая разница. Средний показатель преломления и молярный объем корунда соответственно равны 1,76 и 25,5 см 1моль, а средние парциальные величины и равны 1,52 и [c.260]

    Установленная зависимость оказывается весьма полезной и для расшифровки оптических свойств пленок. При напылении кристаллических веществ на подложки обычно сталкиваются с явлением эпитаксии, т. е. повторением пленкой структуры подложки. Если пленка и носитель изоструктурны, то эпитаксиальный характер пленки будет простираться на всю ее толщину. Если же структура подложки и вещества пленки различна, то вначале, по-видимому, первые слои атомов в пленке будут повторять структуру подложки, а затем произойдет перестройка структуры в обычное для данного вещества фазовое состояние. Изложенные соображения показывают, что с помощью напыления веществ на подложки иной структуры можно заставить данное вещество изменить свою структуру, т. е. испытать фазовый переход. Поскольку это явление будет происходить только в самых первых очень тонких слоях, то экспериментальное доказательство возможного структурного изменения становится очень трудным. Однако именно здесь может оказаться полезной рефрактомег-рия. В табл. 121, составленной по данным работы [294], сопоставлены ПП пленок и массивных образцов кристаллов одинакового состава, из которых видно, что плавленый кварц и сульфид цинка имеют одинаковую координацию в обеих формах, а пленки АЬОз и Сар2 имеют заниженные ПП и также — координационные числа. Судя по величине занижения ПП в корунде, КЧ должно понизиться до 4 при переходе от массивного кристалла к пленке, а во флюорите до 6 или даже, может быть, до 4. Целесообразно проверить этот вывод независимым методом, например электронографически (методом медленных электронов). [c.270]

    Помимо редких земель, из других металлов-активаторов, излучение которых протекает со слабым участием энергетического спектра кристалла, необходимо указать ещё церий, хром и марганец. Они наиболее часто применяются в качестве активаторов в технических люминофорах. Хотя церий по существу должен быть отнесён к редким землям, но по харак- 1 теру излучения (и поглощения) занимает особое место. Энергетические уровни его в состоянии возбужде-= ния расположены на периферии иона и подвержены таким образом активному влиянию решётки [27, 89, 99]. Поведение хрома в люминофорах исследовано преимущественно Дейч-бейном [63, 62, 61, 65]. В решётке корунда (А12О3) излучение можно рассматривать как обязанное основным состояниям трёхвалентного иона хрома, расщеплённым под влиянием поля решётки. Положение с марганцем несколько сложнее. Несмотря на сходство данного металла с хромом, которое обнаруживается по ряду оптических свойств и электронной конфигурации обоих металлов, механизм поглощения и излучения марганца не может быть интерпретирован с той же определённостью. [c.294]

    Монокристаллические материалы составляют основу современной полупроводниковой и вычислительной техники, оптических квантовых генераторов, методов голографии. Искусственные монокристаллы получают различными способами из расплавов, рас-,1 . парообразной или твердой фазы. В первом твердотельном х /ооре, построенном в 1960 г., в качестве рабочего элемента использован монокристалл рубина. Рубин — это кристалл корунда (а-АЬОз), содержащий примеси ионов хрома, Сг+ . Присутствие ионов хрома придает кристаллам корунда красную окраску. В оптических квантовых генераторах (ОКГ) чаще всего применяют бледно-розовый рубин с содержанием хрома около 0,05%. При повышении количества хрома окраска становится уже ярко-красной, а в дальнейшем переходит в зеленую. Кристаллы рубина по своим физико-химическим свойствам в определенной степени уникальны и отвечают всем требованиям, предъявляемым к материалам для ОКГ. Они обладают высокой теплопроводностью, что позволяет избежать их саморазогрева во время работы, имеют высокую оптическую и механическую однородность, исключающую паразитное поглощение и рассеяние энергии, обладают высокой термической, механической и химической стойкостью. Монокристалл рубина для ОКГ должен быть длиной от 50 до 300 мм и диаметром 5—25 мм. Кристаллы такого размера получают синтетическим путем. Одним из наиболее распространенных методов синтеза монокристаллов рубина остается способ, предложенный в 1891 г. Вернейлем. Ультрадисперсный порошкообразный оксид алюминия, легированный оксидом хрома (1П), попадает в пламя кислородно-водородной горелки, где температура достигает 2000 °С, плавится и опускаете) на расплавленную верхнюю часть [c.158]


    Грум-Гржимайло [105, 108] предложены приборы для исследования окраски кристаллов корунда и его оптических аномалий и ориентировки. Тем же автором совместно с Классен-Не-клюдовой [106] подведены итоги основным результатам всех лабораторных исследований корунда и обсуждено их использование при решении практических задач в производстве (анизотропия свойств кристаллов, рентгенографический метод при определении поверхности скола и др.). Антипова-Каратаева и Грум-Гржимайло [107] предлагают определять концентрацию хрома в корунде по изменениям относительной интенсивности люминесценции, которая при небольшом содержании хрома пропорциональна его концентрации. [c.299]


Смотреть страницы где упоминается термин Корунд оптические свойства: [c.238]    [c.270]    [c.300]   
Химическая электротермия (1952) -- [ c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Корунд

Оптические свойства

Оптические свойства свойства



© 2025 chem21.info Реклама на сайте