Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод дифракции медленных электронов

    Применение метода дифракции медленных электронов позволило получить много новой информации об атомной структуре поверхности. В частности, установлено, что чистые поверхности различных веществ можно разделить, по крайней мере, на два класса  [c.446]

    Совершенно очевидно также, что полнота и ценность информации, получаемой отдельными спектральными методами, будут существенно возрастать при комплексном использовании инфракрасной, ультрафиолетовой и люминесцентной спектроскопии, электронного парамагнитного резонанса, ядерного магнитного и квадрупольного резонанса и ядерного гамма-резонанса. При этом для целей исследования механизма взаимодействия и подвижности адсорбированных молекул наиболее благоприятно сочетание методов инфракрасной спектроскопии и метода ядерного магнитного резонанса. Для исследования центров адсорбции кислотной, природы важно сочетание инфракрасной спектроскопии е исследованием ультрафиолетовых спектров, спектров люминесценции и спектров ЭПР адсорбированных молекул. Все эти спектральные исследования, как и отмеченные выше исследования инфракрасных спектров, должны проводиться комплексно с рентгеноструктурными исследованиями, исследованиями поверхностных слоев методом дифракции медленных электронов, электронномикроскопическими, химическими и термодинамическими исследованиями. [c.438]


    У веществ с более сложной кристаллической структурой методом дифракции медленных электронов (ДМЭ) обнаружены упорядоченные поверхностные структуры, отличающиеся от [c.40]

    В. Ф. Киселев (1961 г.) получил надежные опытные доказательства и дал теоретическое обоснование строгого подчинения процесса хемосорбции закономерности стехиометрии. Совместно с сотрудниками им было установлено, что величины и теплоты сорбции на графите обусловлены количеством и характером межатомных связей, возникающих между атомами сорбата и атомами поверхности сорбента. Он отмечает, что хемосорбция на атомарно чистой поверхности приводит к насыщению разорванных на поверхности химических связей. Происходит восстановление нормальной гибридизации орбиталей поверхностных атомов благодаря их связи с хемосорбированными атомами. Исследование поверхности полупроводников со структурой алмаза, а именно монокристаллов германия и кремния методом дифракции медленных электронов, показало, что при сорбции на них кислорода, иода, брома, воды и атомов некоторых металлов действительно восстанавливается порядок в расположении атомов на поверхности, что и позволяет восстанавливать нормальную гибридизацию. [c.199]

    Метод дифракции медленных электронов (ДМЭ) в основном применяют для изучения структуры поверхности. Однако определить струк-т ру поверхности не всегда легко, даже если известно, какая кристал- и)1 рафическая плоскость образует исследуемую грань кристалла. Дело в том, что картина ДМЭ ие просто повторяет картину структуры поверхности. Дифрактограмма скорее соответствует обратно решетке, т. е. иа ней отображаются только повторяющиеся расстояния и разл Ч-иые углы между ними. Обычно одной и той же картине ДМЭ отвечает [c.229]

    Так, Например, исследование перестройки поверхностного слоя катализатора во время реакции методом дифракции медленных электронов привело к явно неожиданным результатам, указывающим на высокое упорядочение хемосорбционных процессов. Оказалось, что адсорбция газов иа металлах происходит не хаотически, не по статистическим законам, а с образованием упорядоченной двумерной решетки. О. В. Крылов отсюда делает заключение, что эти эксперименты должны привести к радикальному отходу от классических представлений об адсорбции по Лэнгмюру. Адсорбцию, а следовательно, н катализ следует, очевидно, рассматривать как цепь скачкообразных превращений с перестройкой поверхности за счет использования энергии акта адсорбции или катализа. При каждой такой перестройке, с одной стороны, изменяется конфигурация активного центра на поверхиости, что приводит к изменению каталитической активности, с другой стороны, в момент перестройки атомы поверхности могут обладать повышенной активностью и участвовать в каталитическом акте [27, с. 8]. Эти выводы он подкрепляет рядом своих экспериментов. [c.208]

    В настоящее время известно много методов изучения поверхности в сверхвысоком вакууме [5—7]. Один из самых прямых методов — дифракция медленных электронов. Электроны с энергиями 10—200 эВ обладают очень низкой проникающей способностью, и их длины волн имеют тот же порядок, что и межатомные расстояния в металле, поэтому они дифрагируют на решетке, образованной атомами поверхностного слоя. Дифракция электронов на флуоресцирующем экране указывает расположение атомов в поверхностных слоях. [c.446]


    Большой успех в исследованиях поверхности твердых тел достигнут в последнее десятилетие в результате разработки методов с применением приборов для измерения ее химической, геометрической, колебательной и электронной структуры. К ним следует отнести прежде всего метод дифракции медленных электронов (ДМЭ), который используется для идентификации периодической структуры поверхности определенной кристаллографической ориентации и известного химического состава. Глубина проникновения низкоэнергетических электронов в кристалл в методе ДМЭ составляет один — два периода решетки. Появление посторонних атомов на поверхности фиксируется с точностью 5—10% от монослоя [28, с. 83]. [c.33]

    Разработано несколько важных методов изучения поверхностей в сверхвысоком вакууме. Один из самых прямых методов —дифракция медленных электронов. Электроны с энергиями от 10 до 200 эв обладают очень низкой проникающей способностью, а их длины волн имеют тот же порядок, что и межатомные расстояния в металле, поэтому они дифрагируют на решетке, образованной атомами поверхностного слоя. Дифракция электронов, которую наблюдают на флуоресцирующем экране, указывает расположение атомов в поверхностных слоях. Дифракционная картина чистой поверхности характеризует верхние слои кристалла, а адсорбция газа на поверхности вызывает соответствующие изменения в этой картине. Получаемую в этом случае дифракционную картину можно расшифровать, учитывая, что она относится к двумерной решетке. При применении метода дифракции медленных электронов было установлено, что в одних веществах расположение атомов на чистой поверхности точно такое же, как и в объеме, а в других веществах в двух или трех верхних слоях имеет место сложная деформация связей и смещение атомов как по поверхности, так и в перпендикулярном ей направлении. [c.186]

    Имеется множество доказательств того, что даже очень гладкие на вид поверхности на молекулярном уровне являются неровными. Природу таких неровностей можно исследовать электронно-микроскопиче-ским методом либо при малых углах отражения, либо с помощью углеродных реплик. Этими способами достигается разрешение до 10 А [1], что позволяет непосредственно увидеть не только дефекты, ступеньки и т. п. на поверхности (см. разд. У-4), но и борозды, оставляемые при скольжении одной поверхности по другой. Ценную информацию о структуре поверхностей можно получить также, изучая их методом дифракции медленных электронов и автоэмиссионными методами (см. разд. У-6). Оптические интерференционные методы позволяют выявлять изменения уровня поверхности всего на 10 А. В более грубом масштабе шероховатость поверхности можно контролировать по колебаниям иглы с алмазным кончиком, медленно движущейся по поверхности. [c.341]

    Хотя применимость метода дифракции медленных электронов к изучению поверхностных реакций была признана еще со времен открытия самой электронной дифракции, но вплоть до последнего времени исследователи, за исключением автора, прилагали мало усилий в этом направлении. [c.322]

    Важным результатом исследований методом дифракции медленных электронов является то, что под влиянием адсорбированных атомов и молекул изменяется структура поверхности чистых граней кристалла (Жер-мер). За счет взаимодействия с адатомами возникают новые упорядоченные конфигурации атомов (происходит так называемая перестройка поверхности). Таким [c.368]

    В последнее время оказалось возможным подтвердить структуру отдельных упорядоченных слоев инертных газов, адсорбированных на гомогенных плоскостях спайности графита, методом дифракции медленных электронов (см. 14.4.1). При давлении 10 тор ксенон [c.270]

    На рис, 5,22 представлена структура поверхности при 9 0= /з, полученная методом дифракции медленных электронов. На pi , 5.22/1 черными точками обозначены дифракционные пятна атомов металла, а белыми точками - дополнительные дифракционные пятна. На рис. 5.22, б показана соответствующая этой картине структура С0( / х/3/й 30 ). Насыщенной кислородом поверхности, соответст- [c.136]

    Преимущество этого метода по сравнению с автоэлектронной микроскопией или использованием ионного проектора состоит в том, что при дифракции медленных электронов не нужны сильные внешние электрические поля поэтому нет и деформации поверхности. Вместе с тем силы, которые удерживают адсорбированные атомы на поверхности, имеют величину не ниже напряженности поля. Поэтому результаты метода дифракции медленных электронов могут быть использованы для анализа нормального состояния поверхности. Кроме того, можно проследить кинетику процесса адсорбции в зависимости от давления остаточного газа и от температуры. [c.367]

    Описанную в 14.4 перестройку поверхности кристалла под влиянием хемосорбированных слоев можно доказать морфологическими изменениями кристаллов при отсутствии хемосорбированного газа. Перестройка поверхности кристалла как элементарный процесс под действием химически адсорбированных газов открыта методом дифракции медленных электронов только в 1960 г. Напротив, поверхностная переориентировка при длительной химической адсорбции известна уже давно. Вследствие химической адсорбции происходит повышение частоты обмена мест частиц на поверхности (т. е. скорости поверхностной диффузии), причем образуются характерные поверхностные структуры (террасы, фасет- [c.377]

    Исследование изменения длины связей в направлении, перпендикулярном поверхности, проводится главным образом методом дифракции медленных электронов, основанным на том, что перестройка поверхностной решетки приводит к изменению условий дифракции. Метод ДМЭ рассматривается в разд. 3 гл. 3, здесь же мы лишь поясним основной принцип метода. Предположим, что невозмущенная решетка состоит из элементарных ячеек типа (1 х 1). При простом увеличении длины элементарной ячейки вдвое мы получим на поверхности плоские ячейки Р(2 х 2), а в объеме - гранецентрированные ячейки С (2 X 2). Оси поверхностной и объемной решеток образуют при этом угол 45°, что можно записать в виде (а х b)R 45°. Метод ДМЭ еще не получил широкого распространения, однако результаты его применения очень интересны и имеют достаточно общий характер. [c.24]


    Несомненный интерес представляет цикл работ Со-морджая и сотр. [174—177] по исследованию кинетики различных реакций (в том числе дегидроциклизации) на монокристаллах металлов (Р1, 1г, N1, Ag) с одновременным определением структуры и состава поверхности методом дифракции медленных электронов и Оже-спект-роскопии. Показано, что атомные ступеньки на поверхности монокристалла Р1 являются активными центрами процессов разрыва связей С—Н и Н—Н. Зависимость скоростей реакций дегидрирования и гидрогенолиза циклогексана и циклогексена от структуры поверхности Р1 свидетельствует о существовании изломов и выступов на атомных ступеньках. Такие дефекты структуры являются особенно активными центрами процесса расщепления С—С-связей. Установлено, что активная поверхность Р1 в процессе реакции покрывается слоем углеродистых отложений свойства этого слоя существенно влияют на скорость и распределение продуктов каталитических реакций. Показано, что дегидрирование циклогексана до циклогексена не зависит от структуры поверхности (структурно-нечувствительная реакция). В то же время дегидрирование циклогексена и гидрогенолиз циклогексана являются структурно-чувствительными реакциями. Полученные результаты позволили расширить классификацию реакций, зависящих от первичной структуры поверхности катализатора и от вторичных изменений поверхности, возникающих в процессе реакции. При проведении реакций на монокристаллах 1г показано, что ступенчатая поверхность 1г в 3—5 раз более активна в [c.252]

    ЭЛЕКТРОННОЗОНДОВЫЕ МЕТОДЫ, физические методы исследования и локального анализа тв. тел с помощью пучка сфокусированных электронов (зонда). После взаимод. электронного зонда с в-вом можно регистрировать 1) электронные сигналы, т. е. электроны, прошедшие через образец (в методах просвечивающей электронной микроскопии, микродифракции электронов, спектроскопии, характеристич. потерь энергий электронов и др.), отраженные электроны (в электронографии на отражение, методе дифракции медленных электронов, зеркальной электронной микроскопии и др.), вторичные электроны, в т. ч. Оже-электроны (в методах электронной Оже-спектроскопии, растровой электронной микроскопии) 2) электрич. сигналы — ток в образце (поглощенные электроны), наведенный ток и наведенную эдс в полупроводниках 3) электромагн. излучение — рентгеновское (в методах рентгеноспектрального микроанализа, спектроскопии пороговых потенциалов), катодолюминесценцпю (в катодолюминесцентном микроанализе). Наиб, распространены рентгеноспектральный [c.700]

    Дадаян К. А., Савченко В. И., Боресков Г. К. Изучение хемосорбции кислорода и начальной стадии окисления монокристалла никеля с ориентацией (100) методами дифракции медленных электронов и оже-спектро-скопии.— Кинетика и катализ, 1977, т. XVIII, вьш. il, с. 189—194. [c.25]

    Это справедливо, когда металлы после травления находятся на воздухе. Если их шлифуют, лойальные высокие температуры, возникающие на поверхности, приводят к образованию заметных количеств оксида, но это не пассивная пленка. Для обнаружения адсорбционных пленок, в том числе и пассивирующих, используют метод дифракции медленных электронов. — Примеч. авт. [c.80]

    Еще Фладе заметил [6], что пассивная пленка на железе тем дольше остается устойчивой в серной кислоте, чем длительнее была предварительная пассивация железа в концентрированной азотной кислоте. Другими словами, пленка стабилизируется продолжительной выдержкой в пассивирующей среде. Франкенталь [17] заметил также, что хотя для пассивации 24 % Сг—Ее в 1 н. НаЗО достаточно менее монослоя Оа (измерено кулонометрически), пленка становится толще и устойчивее к катодному восстановлению, если сплав некоторое время выдержать при потенциалах положительнее потенциала пассивации (см. рис. 5.1). Возможно,. наблюдаемое стабилизирующее действие является результатом того, что положительно заряженные ионы металла проникают в адсорбированные слои отрицательно заряженных ионов и молекул кислорода благодаря сосуществованию противоположных зарядов поддерживается тенденция адсорбционной пленки к стабилизации. Данные метода дифракции медленных электронов для одиночных кристаллов никеля [28], например, свидетельствуют о том, что предварительно сформированная адсорбционная пленка состоит из упорядоченно расположенных ионов, кислорода и никеля, находящихся на поверхности металла приблизительно в одной плоскости. Этот первоначальный адсорбционный слой более термоустойчив, чем оксид N10. При повышенном давлении кислорода на первом слое образуется несколько адсорбционных слоев, состоящих, возможно, из Оа. В результате образуется аморфная пленка. С течением времени в такую пленку могут проникать дополнительные ионы металла, особенно при повышенных потенциалах, становясь подвижными в пределах адсорбированного кислородного слоя. Окамото и Шибата [29] показали, что пассивная пленка на нержавеющей стали 18-8 содержит НаО аналогичные результаты получены для пассивного железа [30]. [c.83]

    Взаимодействие кислорода с чистой поверхностью металла протекает в три этапа I) адсорбция кислорода, 2) иуклеация, т. е. образование зародышей, 3) рост сплошной оксидной пленки. На первых стадиях адсорбции пленка состоит из атомов кислорода, так как свободная энергия адсорбции атомов кислорода превышает свободную энергию диссоциации его молекул. Методом дифракции медленных электронов удалось установить, что атомы некоторых металлов входят в состав адсорбционной пленки и образуют относительно стабильную двухмерную структуру из ионов кислорода (отрицательно заряженных) и металла (положительно заряженных). Как уже говорилось в отношении пассивирующей пленки (разд. 5.5), адсорбционная пленка, составляющая доли монослоя, термодинамически более стабильна, чем оксид металла. На никеле, например, она сохраняется вплоть до точки плавления никеля [1 ], тогда как N 0 разрушается вследствие растворения кислорода в металле . Дальнейшая выдержка при низком давлении кислорода ведет к адсорбции на металле молекул Оа, проникающих сквозь первичный адсорбционный слой. Так как второй слой кислорода связан менее прочно, чем первый, он адсорбируется не диссоциируя. Возникающая в результате структура более стабильна на переходных, чем на непереходных металлах [2]. Любые дополнительные слои адсорбированного кислорода связаны еще слабее, и наружные слои становятся подвижными при повышенных температурах, о чем свидетельствуют рентгенограммы, отвечающие аморфной структуре. Вероятно, ионы металла входят в многослойную адсорбционную пленку в нестехиометрических количествах и к тому же относительно подвижны. Например, обнаружено, что скорость поверхностной диффузии атомов серебра и меди выше в присутствии адсорбированного кислорода, чем в его отсутствие [3].  [c.189]

    Формула де Бройля (III.4а) показывает, что условию коротких волн (III.1) удовлетворяют как медленные электроны с энергиями порядка нескольких электронвольт, так и быстрые электроны, энергия которых составляет сотни и миллионы электрон-вольт. Метод дифракции медленных электронов позволяет иссде— довать структуру нескольких атомных слоев на поверхности твердого тела. Быстрые электроны используются в обычной электронографии для изучения тонких пленок и поверхностных слоев, в 100 А и более. [c.73]

    Усовершенствование техники обработки полученных результатов и их физической интерпретации. В качестве примера можно привести анализ взаимодействия электронов (например, в методе дифракции. медленных электронов) с твердым тело.м. По результатам экспериментов рассматривается разный характер явлений взаимодействия (от дальиодействующих сил при больших расстояниях электрона от поверхности до неупругого возбуждения плазмо-иов или других типов возбуждений электронов), предсказывается зависимость длины пробега и времени жизни от энергии электрона и т. д. Существуют стандартные программы для ана-лиза геометрической структуры по упругой дифракции медленных электронов (работы Андерсена, Дюка и др.), по определению дисперсии поверхностных плазмонов, по неупругой дифракци, медленных электронов и т. д. В ряде случаев это позволяет дать модельное описание чистых металлов и сплавов, а также комплексов, адсорбированных на поверхности. [c.150]

    Дифракция медленных электронов и Оже-спектроскопия. Новый этап в области исследования физико-химических свойств поверхности твердого тела связывается с использованием. методов дифракции медленных электронов (ДМЭ) и Оже-электронной спектроскопии (ОЭС). Совместное использование этих методов позволяет в ряде случаев установить взаи. освязь между структурой и хи- 1ической природой поверхности. [c.151]

    В настоящее время для изучения физики поверхности твердых тел пшроко используется метод дифракции медленных электронов (ДМЭ), фотоэлектронная спектроскопия (ФЭС), рентгеновская фотоэлектронная спектроскопия (РФЭС), метод дифракции отраженных электронов высокой энергии (ДОЭВЭ) и Оже-спектроскопия. [c.687]

    В настоящее время метод дифракции медленных электронов (ДМЭ) относится к наиболее и1ироко применяемым методам исследования физики поверхности. Этот метод аналогичен дифракции рентгеновских лучей, но глубина проникновения медленных электронов в изучаемое твердое тело гораздо меньше, чем рентгеновских лучей. При энергии электронов от 250 до 300 эВ (1 эВ —1,602-10 Дж) основной вклад в формирование дифракционной картины вносят только первые 2—3 слоя атомов твердого тела. Поэтому данный метод особенно пригоден для изучения чистых поверхностей и адсорбционных систем. [c.38]

    Райс и др. [74] сумели перенести растянутые монослон и-гексатри-аконтановой кислоты (Сзе) на коллодиевую пленку, армированную сеткой, и затем теневым методом получили очень интересные электронные микрофотографии, показанные на рис. III-16. На этих фотографиях видны ступеньки толщиной 50 А, соответствующей дл ине углеводородной цепи. В другом методе получения электронных микрофотографий пленка переносится на предметное стекло. Значение результатов этих исследований обсуждается в следующем разделе. Для изучения пленок, правда, также только перенесенных на подложку [76], применяется и дифракция электронов. Метод дифракции медленных электронов обсуждается в связи с адсорбцией газов в разд. V-бБ. [c.108]

    Изучение структуры поверхности проводится главным образом методом дифракции медленных электронов (ДМЭ). Дифракция электронов высокой энергии под малыми углами в основном применяется при исследовании топографии поверхности или природы посторонних сверхслоев. [c.401]

    Большое разнообразие процессов взаимодействия электронов с веществом (рис. 19.1) делает возможным использовать электроны для изучения разных характеристик вещества. Основной характеристикой электронов, которая определяет характер их взаимодействия с веществом и, следовательно, характер получаемой информации о веществе, является скорость электронов или, точнее, их кинетическая энергия. Когерентное (упругое) рассеяние электронов с энергией порядка сотен электрон-вольт (метод дифракции медленных электронов позволяет исследовать атомно-кристаллическую структуру по.верхностного слоя твердых тел). Дифракция упруго рассеянных электронов с энергией порядка десятков и сотен килоэлектрон-вольт (метод дифракции быстрых электронов) используется для анализа трехмерной атомно-кристаллической структуры. Метод дифракции быстрых электронов в этом отношении подобен методу дифракции рентгеновских лучей. Упругое рассеяние и дифракция быстрых электронов лежат в основе еще одного метода электронно-оптического анализа метода просвечивающей электронной микроскопии. В примене- [c.424]

    А12О3 сильное электрическое поле около поверхности взаимодействует с большим квадрупольпым моментом АР и расширяет сигнал АР ниже пределов его обнаружения. Ту же роль играют адсорбированные ионы переходных металлов. Таким образом, поверхностные атомы А1 несут повышенные, по сравнению с объемом, эффективные заряды. Изучение методом дифракции медленных электронов адсорбции кислорода и иода на кремнии [145, 146] показало, что расстояния 81—О и 81—I в поверхностном слое существенно больше суммы ковалентных радиусов Гд. -Ь и Гд. + и близки к сумме соответствующих ионных радиусов. Очевидно, и в этом случае е поверхностных атомов больше, чем объемных. К выводу о высоких эффективных зарядах поверхностных атомов приводит общее соображение [c.41]

    Имеющиеся в настоящее время экспериментальные данные, полученные современными методами (дифракцией медленных электронов, Оже-спектроскопией и др.), позволяют утверкдать/2/, что, благодаря сравнительно непрочным связям между поверхностными атомами твердого тела и, следовательно, их большой латеральной подвижности, в поверхностных слоях твердого тела подчас наблюдается иная структура, чем в объеме. Причина такого несоответствия связана либо с биографией образцов, либо с поверхностными экзотермическими процессами, в которых твердое тело выступает в роли, например, катализатора, либо,наконец, с влиянием на твердое тело различного рода жесткого излучения. [c.268]

    Возможность применения метода дифракции медленных электронов (ДМЭ) для изучения поверхностных явлений связана с малой проникающей способностью электронов при энергиях от нескольких электронвольт до сотен электронвольт и с тем фактом, что длина электронной волны (150/В) /2 оказалась подходящей для дифракции на кристаллических решетках твердых веществ. Показано, что для электронов с энергиями не выше 250—300 эВ заметный вклад в образование дифракционной картины вносят только два и.ти три верхних слоя атомов поверхности, причем основной вклад приходится на первый монослой. Из-за малой проникающей способности электронов дифракционная картина по многим характеристикам больше похожа на картину дифракции света от двумерной решетки, чем на дифракцию рентгеновских лучей от трехмерной решетки криста.тлов. Чтобы оценить эти различия, целесообразно сравнить дифракционные картины рентгеновских лучей и ДМЭ. Для получения лауэграмм используют узкий пучок белого рентгеновского излучения, перпендикулярно падающий на монокристалл. От непрозрачного кристалла и рентгеновские лучи и медленные электроны отражаются и появляются с той же стороны криста.тла, откуда падает исходный пучок. Серии брэгговских отражений от разных рядов плоскостей в кристалле образуют дифракционную картину. Эти отражения можно получить в виде маленьких точек на фотопленке, помещенной на расстоянии неско.тьких сантиметров от кристалла нернендикулярно падающему лучу. Каждая точка соответствует брэгговскому отражению от одного ряда атомных плоскостей при одной д.тине во.тны. При несколько отличной длине волны эти плоскости не дадут отражения. Разные наборы плоскостей удовлетворяют уравнению Брэгга при различных длинах волн. Именно поэтому падающий пучок должен состоять из волн разной длины и представлять белое излучение. При применении ДМЭ благодаря преобладающему эффекту двумерной решетки [c.263]

    При низких температурах наблюдается физическая адсорбция водорода на углеродных материалах [143]. Молекулярное движение в монослое водорода, адсорбированного на угле и базисных плоскостях микрокристаллического и частично ориентированного графитов, исследовано в работе [144] методом нейтронной спектроскопии в интервале 40—140 К. При высокой температуре молекулярный водород находится преимущественно в. газоподобном состоянии. При низкой температуре водород переходит в локализованное состояние, в котором молекулы могут диффундировать вдоль поверхности. Структурированный характер адсорбционного состояния водорода на графите при низких температуре и давлении был подтвержден методом дифракции медленных электронов [145]. [c.61]

    В работах [388, 393] для объяснения полученных данных привлекаются оба фактора. Авторами исследована адсорбция сероводорода на грани (100) платины [393]. Заполнение поверхности серой подчиняется кинетике Ленгмюра. Уменьшение работы выхода электрона при адсорбции серы до насыщения поверхности и аналогия со свойствами Р152 дает основание предположить, что сера с платиной образуют ковалентную связь, о чем говорилось в работе [351]. Метод дифракции медленных электронов показывает на отталкивательное взаимодействие между атомами серы, осуществляемое косвенно через платиновую подложку. Высоковакуумное изучение грани (100) платины позволило идентифицировать три различных механизма отравления серой (рис. 35) [388, 393] 1) когда поверхность покрыта одним атомом серы на два поверхностных атома платины, контакт химически инертен 2) при более низком покрытии химические свойства поверхности платины модифицированы сильной химической связью с серой, что ослабляет взаимодействие платины с адсорбатами  [c.143]

    Заканчивая обсуждение метода дифракции медленных электронов, уместно подчеркнуть еще одно и наиболее неожиданное следствие, вытекающее из применения этого метода с помощью этого метода было экснериментально показано, что заполнение новерхности (нанример, при хемосорбции водорода на грани 110 никеля) с повышением давления может происходить скачкообразно. В гл. 2 (разд. 2.3—2.3.8.1) молчаливо подразумевалось, что любая изотерма должна представлять заполнение поверхности в виде непрерывной функции равновесного давления (для хемосорбции). Ландер [456] указал на необходимость анализировать изотермы адсорбции с помощью адсорбционного уравнения Фаулера и Гуггенгейма [469], выведенного ими главным образом в чисто академических целях, но позволяющего в отличие от уравнений Ленгмюра, Фрейдлиха, Темкина и др. предсказывать возможность скачков при заполнении поверхности. Уравнение Фаулера и Гугген-хейма связывает давление р в газовой фазе со степенью покрытия поверхно- НОСТИ 0 [c.141]

    Метод дифракции медленных электронов. В противоположность электронам высокой энергии (порядка нескольких килоэлектроновольт), которые при отражении или просвечивании пробивают несколько сот атомных плоскостей, электроны малых энергий (10—100 эв) отражаются уже от первого или самых верхних слоев атомов. Поэтому с помощью таких дифракционных фигур можно получить информацию о структуре внешних плоских атомных слоев чистых кристаллов и адсорбционных пленок. Развитие этого метода стало возможным только в последнее десятилетие благодаря овладению техникой сверхглубокого вакуума, который необходим для исследования поверхностей чистых кристаллов. Правда, применение этого метода связано с некоторыми техническими и теоретическими трудностями. Самые высокие тре- [c.366]

    Типы адсорбционных ппенок. Адсорбционные пленки принято делить на три основных типа мономолекулярные, полимолекулярные (многослойные) и конденсированные (жидкие). При низких температурах адсорбированные молекулы обычно прочно связаны с центром адсорбции. Эти процессы детально исследованы для пластинчатых кристаллов типа графита, BN, alj и Т.Д., на которых легко получить однородные поверхности. При этом часто образуется двумерная пленка, строение которой определяется структурой кристалла-подложки. Примером таких процессов (называемых двумерной конденсацией) может служить адсорбция ксенона Хе на графите, экспериментальные характеристики которой приведены на рис. 4.3, а. Наблюдаемый фазовый переход аналогичен обычным фазовым переходам газ — твердое тело и отличается от них лишь только тем, что при малой степени заполнения поверхности адсорбированные молекулы достаточно прочно связаны с адсорбентом и не переходят в газообразное состояние. Количество адсорбированного ксенона определяли методом оже-спектроскопии и одновременно структуру пленки изучали методом дифракции медленных электронов. На рис. 4.3, б представлены данные по адсорбции криптона на поверхности измельченного КС1 ( уд = 1 м /г).  [c.77]

    Большие успехи в изучении X. достигнуты в последнее время благодаря применению новейших физико-химич. методов исследования. Напр., изучение X. на металлич пленках (N1, Р1), полученных в ультравакууме (10 —10 мм), показало, что такие пленки обладают большой ненасыщенностью. Молекулы На, Оа II других газов хемосорбируются на них без энергии активации. Малые значения динольного момента этпх хемосорбированных слоев, обнаруживаемые измерениями работы выхода электронов, указывают на образование ковалентной связи. Вероятно, в ней участвуют -электроны металлов. В присутствии загрязнений может наблюдаться энергия активации за счет хпмич. реакции адсорбата (На, Оа) с этими загрязнениями. Энергия активации при X. на металлах может указывать также на растворение газа в поверхностном слое. Изучение хемосорбированных слоев на металлах методами дифракции медленных электронов эмиссионного электронного и ионного проекторов показало в ряде случаев кристаллохимич. соответствие структуры хемосорбированного слоя и объема металла и резкую зависимость структуры хемосорбированного слоя и величины X. от кристаллографич. индекса грани. Напротив, при адсорбции Оа и J. на Ое-было обнаружено отличие структуры хемосорбированного слоя от объема адсорбента. [c.313]


Смотреть страницы где упоминается термин Метод дифракции медленных электронов: [c.700]    [c.702]    [c.150]    [c.50]    [c.702]    [c.244]    [c.20]    [c.470]    [c.87]   
Введение в электрохимическую кинетику 1983 (1983) -- [ c.85 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Дифракция

Дифракция электронов

Электронная дифракция

Электронного медленная

Электронных пар метод



© 2025 chem21.info Реклама на сайте