Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптический квантовый генератор

    Монокристаллические материалы составляют основу современной полупроводниковой и вычислительной техники, оптических квантовых генераторов, методов голографии. Искусственные монокристаллы получают различными способами из расплавов, рас-,1 . парообразной или твердой фазы. В первом твердотельном х /ооре, построенном в 1960 г., в качестве рабочего элемента использован монокристалл рубина. Рубин — это кристалл корунда (а-АЬОз), содержащий примеси ионов хрома, Сг+ . Присутствие ионов хрома придает кристаллам корунда красную окраску. В оптических квантовых генераторах (ОКГ) чаще всего применяют бледно-розовый рубин с содержанием хрома около 0,05%. При повышении количества хрома окраска становится уже ярко-красной, а в дальнейшем переходит в зеленую. Кристаллы рубина по своим физико-химическим свойствам в определенной степени уникальны и отвечают всем требованиям, предъявляемым к материалам для ОКГ. Они обладают высокой теплопроводностью, что позволяет избежать их саморазогрева во время работы, имеют высокую оптическую и механическую однородность, исключающую паразитное поглощение и рассеяние энергии, обладают высокой термической, механической и химической стойкостью. Монокристалл рубина для ОКГ должен быть длиной от 50 до 300 мм и диаметром 5—25 мм. Кристаллы такого размера получают синтетическим путем. Одним из наиболее распространенных методов синтеза монокристаллов рубина остается способ, предложенный в 1891 г. Вернейлем. Ультрадисперсный порошкообразный оксид алюминия, легированный оксидом хрома (1П), попадает в пламя кислородно-водородной горелки, где температура достигает 2000 °С, плавится и опускаете) на расплавленную верхнюю часть [c.158]


    Излучение электромагнитных волн может отличаться от других излучений такой характеристикой, как когерентность. Некогерентным является тепловое излучение нагретых тел и плазмы, когерентное излучение создается оптическими квантовыми генераторами - лазерами. [c.91]

    Оптический квантовый генератор [c.173]

    Стойка с оптическим квантовым генератором (ОКГ) предназначена для настройки светового луча в соответствии с требованиями технологического процесса. Оптический квантовый генератор, закрепленный на основании теодолита, устанавливается на подвижном столике механизма горизонтального перемещения, кронштейн которого имеет возможность перемещаться вертикально по винту стойки. Конструкция стойки обеспечивает лазерному визиру необходимые движения при проведении разметочных работ в корпусе колонного аппарата. Оптический квантовый генератор используется в качестве источника монохроматического когерентного излучения, позволяющего получить параллельный пучок света. Прибор в комплекте состоит из оптического квантового генератора и блока питания. Работа с прибором должна проводиться на основании паспорта и инструкции по эксплуатации. [c.212]

    Закон анизотропии, справедливый для всех без исключения кристаллов, гласит векторные свойства кристаллического вещества в любой точке объема в параллельных и симметричных направлениях одинаковы, в других направлениях различны. Законом анизотропии руководствуются а производстве оптических квантовых генераторов, в различных технологических процессах обработки монокристаллов полупроводников, например при резании их по определенным плоскостям, при травлении, при приготовлении так называемых р—л-переходов (см. гл. IX) и т. п. Для кварцевых резонаторов и ультразвуковых генераторов надо вырезать пластины кварца по определенным направлениям в зависимости от конкретных задач. [c.116]

    Знак минус в уравнении (7.22) характеризует убыль интенсивности света при увеличении толщины поглощающего слоя. Следует отметить, что данное линейное соотнощение перестает быть справедливым при очень больших интенсивностях светового потока, поскольку становится зависимой от /. Это явление относится уже к нелинейной оптике, составляя основу оптических квантовых генераторов. Интегрируя уравнение (7.22) [c.179]

    Здесь хотелось бы обратить внимание на те возможности в разработке высокоэффективных технологических процессов, которые открывает принцип функционирования физико-химических систем в условиях, далеких от равновесия. Принцип этот, как было сказано в гл. V, в 1960—1970-е годы получил теоретическое обоснование в неравновесной термодинамике, а за самое последнее время — широкую практическую апробацию в качестве основы интенсификации многих отраслей химического и металлургического производства. Увеличение объема выпуска продукции в единицу времени и повышение ее качества сегодня во многом определяется максимальной концентрацией используемых потоков энергии. Среди них все шире получают распространение потоки горячих газов, электронные пучки, плазмотроны, лучи оптического квантового генератора — лазера. [c.234]


    В последнее время для возбуждения спектров комбинационного рассеяния начали использовать интенсивное излучение оптических квантовых генераторов —- лазеров. Большая концентрация энергии в маленьком объеме позволила работать с очень малыми количествами анализируемого вещества, а высокая монохроматичность лазерного излучения дает возможность использовать линии, отстоящие всего на 30 см от возбуждающей линии. Одновременно возросла также чувствительность метода. [c.342]

    Появление мощных оптических квантовых генераторов (ОКГ) обусловило возникновение двух новых быстро развивающихся областей исследований — нелинейной оптики И физики и химии воздействия потоков энергии на вещество [12, 13]. Кратко рассмотрим эти два направления. [c.437]

    В области создания и совершенствования новых методов обработки материалов на кафедре под руководством доц. В. С. Коваленко ведется работа по использованию процессов обработки материалов с помощью излучения оптического квантового генератора (ОКГ) изучается возможность использования излучения ОКГ для упрочнения режущего инструмента, обработки отверстий, контурной обработки материалов. [c.34]

    Батурин С. А. Исследование тепловыделения, смесеобразования и излучения в цилиндре дизеля с использованием оптического квантового генератора. Автореф. канд. дис. Л., 1973. [c.228]

    В советской литературе употребляется также термин оптический квантовый генератор света (ОК.Г). — Прим. перев. [c.558]

    Оптические спектры атомов рубидия и цезия характеризуются наличием в ближайшей инфракрасной области очень ярких резонансных линий, отвечающих для рубидия 7947,60 и 7800,227 А н для цезия 8943,50 и 8521,10 А [50,51]. Интенсивность линий 8521,10 и 7800,227 А, а также линии калия 7664,907 А является наибольшей среди всех элементов периодической системы и составляет 9000 условных единиц. Линии 7800,227 А рубидия отвечает переход с потенциалом возбуждения 1,59 в [52]. Характер возбуждения уровней атома рубидия очень медленными электронами представляет интерес при практическом использовании рубидия в установках с низкотемпературной плазмой [52]. Цезий может служить также одним из материалов для изготовления газовых оптических квантовых генераторов. Для оптического возбуждения в атомах цезия верхнего уровня 8 1/ обычно используется [c.79]

    Органические красители и пигменты являются продуктами тонкого органического синтеза. Основной истребитель красителей— предприятия текстильной и легкой промышленности, на долю которых приходится приблизительно 80% производимых красителей остальные 20% используются для крашения сииге-тических волокон в массе при их производстве, пластических масс, резины, бумаги, ппщевых продуктов, для лакокрасочных н фотографических материалов, в полиграфии, в качестве активных сред оптических квантовых генераторов, в приборах цифровой индикации, ири аналитических исследованиях и для других целей. [c.10]

    Лазер, или оптический квантовый генератор,— это прибор, позволяющий преобразовывать энергию различного рода (чаще всего электрическую) в когерентное электромагнитное излучение с большой плотностью энергии. Химические превращения определенного вида могут генерировать лазерное излучение (химические лазеры). В свою очередь лазерное излучение любого происхождения (но не обязательно химического) относится к числу экстремальных источников воздействия, вызывающих разнообразные химические реакции.  [c.100]

    Оптические квантовые генераторы получили название лазеров. Излучение распространяется узким пучком и характеризуется высокой концентрацией энергии. Режим работы их может быть импульсным и непрерывным. К настоящему времени созданы лазеры на кристаллах СаРа, aW04, ЗгМо04, стеклах и пластмассах. В качестве активирующих добавок используются редкоземельные элементы (неодим, иттербий, гадолиний, гольмий, самарий и др.), что связано с наличием у них большого числа свободных состояний. Особый интерес представляют полупроводниковые лазеры, которые имеют высокий коэффициент полезного действия (в действующих моделях он равен 70%). Принцип действия их заключается в возбуждении стимулированного излучения, сопровождающего рекомбинацию электронов и дырок в области р—п-перехода при плотности тока 700—20 ООО а/см . р—л-Переходы в первых полупроводниковых генераторах осуществлялись на основе полупроводников А В (см. гл. IX). Длина волны излучения лазера на арсениде галлия с примесью цинка и теллура оказалась 8400 А. [c.111]

    Другой метод колебательной спектроскопии, основанный на комбинационном рассеянии света (спектроскопия КР), длительное время не находил широкого применения в неорганической химии из-за технических трудностей получения спектров КР. Положение радикально изменилось в связи с созданием оптических квантовых генераторов (лазеров), применение которых для возбуждения спектров КР устранило существовавшие ограничения и трудности. [c.211]

    В неразрушающем контроле качества промышленной продукции под источником света понимают излучатель электромагнитных колебаний в оптической части спектра инфракрасной, видимой и ультрафиолетовой. Для получения световых потоков используют электрические лампы накаливания, газоразрядные и люминесцентные, светодиоды и оптические квантовые генераторы. В оптическом контроле качества наибольшее распространение в настоящее время получили лампы накаливания в специальном исполнении. Ориентировочные данные по различным источникам света приведены в табл. 6.1. [c.224]


    Еще в 1917 г. А.Эйнштейн выдвинул гипотезу о существовании не только спонтанных, но и вынужденных (стимулированных или индуцированных) переходов в атомах, сопровождающихся излучением. Попытка обнаружения стимулированного излучения в газовом разряде была предпринята Р.Ландебурном в 30-е годы, а в 1М0 г. В.А.Фабрикант сформулировал необходимые для этого условия. После второй мировой войны многие физики вернулись в лзбор атории, привнеся в работу опыт, полученный с радиолокационной техникой СВЧ. Одним из таких физиков, занявшихся СВЧ-спектроскопией, — как пишет Дж. Пирс [7], — был Чарльз Таунс. .. В 1951 г., сидя на парковой скамейке в Вашингтоне перед деловой встречей, Таунс впервые представил себе принцип, на котором сейчас базируется действие лазера . В 1954 г., почти одновременно, Н.Г. Басовым и А.М. Прохоровым в СССР (в Физическом институте им. П.Н. Лебедева) и Ч. Таунсом с сотрудниками в США (в Колумбийском университете) был создан первый молекулярный генератор на аммиаке, излучающий радиоволны с длиной волны около 1 см. Эта работа была отмечена Нобелевской премией. В 1960 г. Т. Мейман (фирма Хьюз , США) создал первый в мире рубиновый оптический квантовый генератор. Дальнейшее развитие квантовой электроники и нелинейной оптики — результат работы многих отечественных и зарубежных ученых [8]. [c.96]

    Световые лучи достаточной интенсивности, будучи сфсркусированными с помощью системы зеркал или линз, позволяют получить в фокусе весьма высокие температуры. Такого рода оптические печи применяются данно. В качестве источника излучения использовались солнце, электрическая дуга, вольфрамовые нити лампы накаливания, угольные и графитовые нагреватели, газоразрядные лампы высокого давления и плазменные излучатели. В фокусе оптических печей можно получать температуры до 4000 К, поэтому они довольно широко использовались в лабораторных исследованиях. В промышлен-носги из-за сложности и малого КПД они не получили распространения. Положение изменилось с появлением лазеров (оптических квантовых генераторов). [c.380]

    Известны реакции, инициация которых происходит иод воздействием излучения оптических квантовых генераторов (лазеров), которые генерируют монохроматическое излучение вы-соко11 энергии. Химические реакции под воздействием лазерного излучения обладают высокой селективностью. [c.101]

    Отклонение оборудования от горизонтальности проверяют уровнем (или гидростатическим уровнем) или нивелиром по базовым поверхностям или контрольным площадкам на собранном оборудовании. Отклонение оборудования от вертикальности контролируют уровнем, отвесом илн теодолитом. В последнее время при выверке оборудования все шире применяют способы технических измерений с применением оптических квантовых генераторов-лазеров. Отечественная промышленность выпускает следующие лазерные приборы визир ЛВ-5М, нивелир ЛН-56, зенит-центрир ЛЭЦ-1 и светодальномер ЛСД-1М. [c.324]

    СКР имеет преимущество перед ИК спектрами поглощения, которое заключается в простоте устройства приборов. В данных приборах используются стеклянная оптика, более дешевые приемники и источники излучения. В качестве приемника излучения широко применяются фотоэлементы я фотоумножители. В качестве источника монохроматического излучения применяются оптические квантовые генераторы, дающие монохроматическое излучение высокой янтенсивиости, что значительно облегчает исследования СКР газообразных и твердых кристаллических соединений. При исследовании СКР растворов в качестве растворителя можно применять воду. Это открывает широкие возможности исследования структуры неорганических, координационных соединений, ионов в растворах. [c.29]

    Электромагнитное излучение радиоволнового диапазона генерируется и излучается макроскопическими объектами, которыми являются, например, высокочастотные передатчики и антенны. Такое излучение обычно когерентно. Излучаемые двумя независимыми источниками радиоволны могут беспрепятственно интерферировать. Излучение в оптической (инфракрасной, видимой, ультрафиолетовой) и рентгеновской областях спектра вызывается изменением энергетического состояния микросистем в атомной области. Такое излучение состоит из очень большого набора волн, характеризующихся малыми разностями частот. Эти электромагнитные волны не имеют определенных соотношений фаз, и поэтому они не когерентны. Явление интерференции для них может наблюдаться только в случае деления излучения на несколько потоков и закономерным взаимным сдвигом фаз в них. Эта кажущаяся противоположность обеих рассматриваемых областей была преодолена после изобретения оптического квантового генератора — лазера [Басов, Прохоров (1954), Шавлов, Таунс (1958), Мейман (1960)]. Осуществляющееся в лазере генерирование микросистемой когерентного излучения оптического диапазона своеобразно иллюстрирует единство спектров электромагнитного излучения. [c.172]

    В 1960 г. Мейман (США) создал оптический квантовый генератор на искусственном рубине. Активным веществом в нем была окись алюминия, в которой 0,05% атомов алюминия замещалось атомами хрома. На основе возбуждения индуцированного возвращения в основное состояние атомов хрома удалось получить мощное излучение в красной области видимого диапазона Ск = 6929 А, 6943 А). [c.111]

    Использование таких материалов значительно увеличивает коэффициент полезного действия термоэлектрических преобразователей. Они нужны для разработки полупроводниковых оптических квантовых генераторов и фотоэлектрических приемников, использующих эффект собственной фотопроводимости, для диапазона длин волн не выше 5—7 мкм. В полупроводниках с малой шириной запрешеннсй зоны и с высокой подвижностью носителей тока (типа InSb) обнаружены различные физические явления, представляющие особый практический интерес. [c.298]

    Двойные молибдаты РЗЭ могут быть получены из растворов. В системах Ьп(ЫОз)з — МезМо04—Н2О получены двойные молибдаты, соответствовавшие составу МеЬп(Мо04)2 лН20 [76, 77]. Они могут быть использованы в качестве материалов для оптических квантовых генераторов. [c.66]

    Активными материалами могут быть твердые диэлектрика, газы, полупроводники и жидкости практически промышленные оптические квантовые генераторы выполняются на твердых телах или как газовые. В качестве твердых тел используют рубин (плавленая окись aлю иния с добавкой 0,05 % трехвалентного хрома) и стек/.о с примесями неодима (до 5%), а в последнее врем — алюмоиттриевый гранат с неодимом. При воздействии на рубин световых лучей атомы хрома возбуж-дзчютоя и через несколько миллисекунд излучают фото- [c.380]

    Как известно, лазер (оптический квантовый генератор) генерирует когерентные элекгромагнитные волны. Его действие основано на вынужденном испускании фотонов под влиянием внешнего электромагнитного поля. Для этого в рабочем теле (например, газе) источника излучения создают такую инверсную заселенность частиц в возбужденном состоянии с энергией Е2, чтобы число возбужденных частиц превышало число невозбужденных с энергией Е. Тогда при прохождении через среду электромагнитной волны с частотой са = ( - Е )кЬ /2т1 интенсивность ее будет нарастать за счет актов индуцированного испускания света возбужденными частицами. Усиление электромагнитной волны за счет вынужденного испускания приводит к экспоненциальному росту ее интенсивности I по мере прохождения пути z  [c.433]

    Добавки оксидов РЗЭ в процессе стекловарения позволяют получать стекла различных цветов ярко-красные (оксид неодима), зеленые (оксид празеодима). Оксид церия (IV) применяют в стекольной промышленности для полировки стекла. Экраны кинескопов для цветного телевидения изготовляют из ванадата иттрия, активированного оксидом европия. РЗЭ используются в производстве оптических квантовых генераторов — лазеров (иттрий-гадолиниевые, а также гадоли-ний-таллиевые гранаты, легированные неодимом). [c.191]

    Определение поверхностного и объемного газосодержанпя, а также локальный анализ иа поверхности порядка 1 осуществляются с помощью твердотелого оптического квантового генератора (ОКГ). Исследуемый образец в изотопсодержащей смеси подвергается воздействию излучения ОКГ с энергией импульса от 50 до 300 дж, в результате чего происходит обмен изотопсодержащего газа определяемым газом из металла. Смесь газа подается в разряд- [c.24]

    При работе с аппаратурой оптического контроля качества должны соблюдаться общие правила по технике безопасности и охране труда. Оптический контроль происходит при повышенной нагрузке на глаза оператора, что надо учитывать при его организации. Особую опасность могут представлять источники, несущие концентрированные потоки световой энергии, в первую очередь оптические квантовые генераторы — лазеры. При их использовании в процессе проведения контроля должна быть произведена гигиеническая оценка условий контроля и особенно должна быть проанализирована опасность нанесения вреда людям отраженным или рассеянным излучением, в том числе и от предметов, которые могут случайно попасть на линию распространения лазерного излучения металлические части, стеклянные поверхности, лист бумаги, хорошо отражающие участки стен и т. д. Поэтому работа с лазерными установками, особенно при значительных его мощностях должна производиться в специальных помещениях с использованием защитных очков со светофильтрами, задерживающими большую часть излучения, и при экранировании наиболее опасной части установки. Следует помнить, что наиболее опасно облучение глаз, они поражаются излучением квантового генератора настолько быстро, что при облучении трудно принять защитные меры и их в случае опасности необходимо предусмотреть заранее. Максимально допустимые уровни плотности потока мощности в зависимости от типа лазера, длины волны и режима работы оператора составляют для кожи 0,1 Дж/см2, а для глаз — 0,002— 1,0 мкДж/см . [c.223]


Библиография для Оптический квантовый генератор: [c.19]   
Смотреть страницы где упоминается термин Оптический квантовый генератор: [c.212]    [c.214]    [c.96]    [c.201]    [c.33]    [c.311]    [c.372]    [c.124]    [c.209]    [c.211]    [c.315]    [c.174]   
Методы и средства неразрушающего контроля качества (1988) -- [ c.167 ]

Основы общей химии Том 2 (1967) -- [ c.196 ]




ПОИСК





Смотрите так же термины и статьи:

Генератор



© 2025 chem21.info Реклама на сайте