Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкие элементы и их использование

    В решениях ХХИ съезда КПСС, касающихся металлургии, особо отмечаются важнейшие народнохозяйственные задачи получения металлов высокой чистоты и комплексной переработки руд и полупродуктов с целью максимального использования их составляющих — рассеянных и редких элементов. Ценность электрохимических методов заключается в том, что в процессе электролиза при точном соблюдении заданного электродного потенциала при прочих равных условиях удается выделять нужный металл, свободным от примесей других металлов. Кроме того, можно селективно получить ряд металлов сообразно потенциалам его выделения. Поэтому методы электролитического осаждения металлов широко используются в гидрометаллургии. [c.11]


    Общим недостатком всех экстракторов с механическими мешалками является затруднительность эксплуатации их при обработке сильно химически агрессивных или радиоактивных веществ. Этого недостатка лишены пульсационные (ситчатые и насадочные) экстракторы, сочетающие большую производительность с высокой интенсивностью массопередачи. Пульсационные экстракторы успешно применяются в процессах разделения и получения.редких и рассеянных элементов. Использование этих аппаратов в многотоннажных производствах сопряжено с трудностями, обусловленными необходимостью сообщения вибраций значительным массам жидкости. [c.650]

    К редким элементам (РЭ) условно относят примерно 60 элементов, промышленное получение и более или менее широкое практическое использование которых началось сравнительно недавно  [c.368]

    И в других областях науки и техники применение сплавов редких металлов сделало реальным то, что еще незадолго до этого казалось фантастикой. Один нз самых ярких примеров — использование вольфрамовых нитей в лампочках накаливания. Изготовлявшиеся до того времени графитовые нити накаливания быстро перегорали. Только применение редкого элемента — вольфрама — сделало электрические лампочки (Лодыгин, Столетов, Эдисон) самым обычным и необходимым предметом в быту и в технике. [c.251]

    Развитие техники в век НТР идет как бы по цепной реакции быстро развивающиеся области науки и промышленности взаимно обогащают друг друга, еще невозможное вчера становится явью сегодня. Это относится и к космической технике, и к ядерной индустрии, к радиоэлектронике и многим другим областям науки и техники. Но в основе прогресса все же лежит химия и металлургия (тоже одна из областей химии), расширяющие наши возможности благодаря использованию редких элементов, особенно редких металлов и их соединений. [c.252]

    Необходимость сжигания малозольных концентратов в циклонных топках была выдвинута НИИ углеобогащения в связи с Намечающимся использованием циклонных топок в технологическом процессе извлечения редких элементов из золы топлива. [c.108]

    Редкие элементы — условное название большой группы (около 50) элементов лития, бериллия, галлия, индия, германия, ванадия, титана, молибдена, вольфрама, редкоземельных элементов, инертных газов и др. Большинство Р. э.— металлы, поэтому термин редкие элементы часто заменяют термином редкие металлы . Появление термина Р. э. объясняется сравнительно поздним освоением и использованием этих элементов, что связано с их малой распространенностью, трудностями выделения в чистом виде и др. Неправильно связывать понятие Р. э. только с малой распространенностью их, так как ряд этих элементов (титан, ванадий, литий и др.) содержатся в земной коре и в больших количествах, чем давно используемые в технике такие металлы, как свинец, олово, ртуть. [c.112]


    Как правило, основные источники природного сырья кроме необходимого компонента содержат и другие ценные вещества. К примеру, в железной руде часто присутствуют медь, титан, ванадий, кобальт, цинк, фосфор, сера, свинец и другие редкие элементы. В полиметаллических рудах содержится более 50 ценных элементов, в том числе олово, медь, кобальт, вольфрам, молибден, серебро, золото, металлы платиновой группы. Часто сопутствующие элементы обладают большей ценностью, чем основные, ради которых организовано производство. В природном газе находятся азот, гелий, сера, а в составе газового конденсата — гомологи метана. В нефтях содержатся различные соединения серы и им сопутствуют попутные газы, в состав которых входят ценные углеводороды, а также пластовые воды с содержанием йода, брома и бора. Полное использование вещественного потенциала сырья выходит за рамки одной ХТС и становится возможным только при комплексной переработке сырьевых ресурсов, обеспечиваемой многими отраслями промышленности. [c.307]

    Значение использования органических проводников обусловлено по существу безграничным запасом доступных материалов, оказывающих минимальное влияние на экологию и не вызывающих большинства стратегических проблем, которые могут возникнуть при применении металлов и редких элементов. Устойчивость к коррозии, воздействию воздуха и воды, легкость получения в ввде очень тонких пленок и пригодность для введения в такие материалы, как ткани, — все это также имеет значительные преимущества по сравнению с использованием металлических эквивалентов. [c.675]

    Для осаждения металлов хлорлигнин вносят в раствор, содержащий редкие элементы в виде щелочного или содового раствора После перемешивания хлорлигнин, содержащий связанные металлы, осаждают при слабом подкислении серной кислотой [87] Осадок центрифугируют, и паста подвергается обогащению и специальной обработке для извлечения ценных металлов Условия получения хлорлигнина очень важны и определяют качество препарата Важно, чтобы действие хлора не было продолжительным, не нужен избыток хлора, в противном случае исчезают образующиеся активные группировки и реагент работает хуже Хлорлигнин может быть использован также в качестве поверх-ностно-активного реагента при бурении нефтяных и газовых скважин [88], однако соответствующие реагенты, полученные путем нитрования гидролизного лигнина разбавленной азотной кислотой, являются более активными понизителями вязкости промывочных глинистых растворов Хорошие результаты в качестве реагентов, регулирующих свойства глинистых растворов, показали хлорированные сульфитные щелока [89] [c.118]

    В последние годы проявляется повышенный интерес к цветным реакциям, выполненным в водной среде при участии ионов, образуемых органическими соединениями. Эти реакции протекают практически мгновенно и вполне понятны по своему химизму. Также повысился интерес к использованию в качестве реагентов на органические соединения соединений различных элементов, в том числе и так называемых редких элементов. При выполнении реакций этой категории оказывается возможным использовать большой опыт, имеющийся в неорганическом анализе по применению органических аналитических реагентов. [c.771]

    Помимо ранее известных областей использования этого метода в науке и в различных областях технологии, физико-химический анализ применяется сейчас в химии полупроводников, редких элементов, радиохимии, теории и технологии выращивания монокристаллов и др. [c.2]

    В настоящее время, благодаря усовершенствованию методов добычи, разделения и очистки, многие редкие элементы, в том числе и редкоземельные, становятся все более доступными. В ряде случаев соединения РЗЭ получаются как побочные продукты некоторых производств и используются недостаточно. В связи с этим в последнее время весьма интенсивно проводятся исследования свойств соединений этих элементов и поиски путей их применения в различных областях народного хозяйства. Уже сейчас РЗЭ используются в атомной технике, электронике и радиотехнике, черной и цветной металлургии, химической промышленности и других областях народного хозяйства. Одним из возможных путей применения этих элементов является их использование в качестве катализаторов или компонентов катализаторов. [c.223]

    Применение избирательных органических реагентов и использование избирательных схем фотометрического определения элементов (здесь мы рассматриваем в основном редкие элементы) составит серьезную конкуренцию физическим и физико-химическим методам, видимо, еще по крайней мере на протяжении 20—30 лет. Преимущества фотометрических методов, не требующих сложной аппаратуры, очевидны чувствительность методов достаточно высока (молярные коэффициенты погашения для лучших реагентов составляют 50—150 тыс.), что позволяет определять от 100 до 0,01 мкг абсолютных количеств вещества или до 10" % элемента в объекте без отделения основы, до 10 %—применяя простые, экспрессные схемы отделения, и до 10 —10 % —с предварительным концентрированием определяемого элемента. Сложные схемы подготовки анализируемого материала, не пригодные для использования их в автоматических анализаторах, вряд ли найдут широкое применение. При содержании элемента менее 10" % применение обычных фотометрических методов оправдывается только в редких случаях. Следует, однако, отметить, что здесь мы совершенно не рассматриваем другие химические методы анализа, которые также связаны с изменением окраски растворов (реакции, основанные на каталитических явлениях, ферментный анализ и др.), которые, возможно, существенно изменят наши представления о соотношении между собою различных видов анализа. [c.124]


    Придерживаясь точки зрения советской геохимической школы, мы будем считать, что редкость элемента есть свойство, зависящее от строения атома, и подразумевать под редким элементом мало распространенный в природе элемент, характеризующийся небольшой величиной кларка (меньше 0,001%). Под редкими металлами мы будем понимать те металлы, использование которых могло быть начато только при достаточно высоком уровне развития производительных сил и которые до настоящего времени еще производятся и применяются в относительно малых количествах. Таким образом, в понятие редкий металл вкладывается историческое содержание, учитывающее пути развития технологии редкого металла и его роль в современной технике [c.15]

    Современное развитие науки и техники немыслимо без применения многих редких элементов. За последние годы редкие элементы стали широко применяться в народном хозяйстве, в результате чего постепенно накопился большой опыт промышленного использования их в разнообразных областях техники. [c.18]

    Ртуть — весьма редкий элемент. Ее среднее содержание в земной коре 4,5-10 % (по массе). Примерно в таком же количестве она содержится в изверженных горных породах. Известно 35 рудных минералов, содержащих ртуть в таких концентрациях, при которых промышленное использование этих минералов технически возможно и экономически целесообразно. Основной рудный минерал — киноварь Н88 [c.138]

    Материал справочника расположен по так называемой технической классификации редких элементов (рассеянные, легкие, тугоплавкие, радиоактивные, редкоземельные элементы) отнюдь не потому, что авторы считают такую классификацию наиболее правильной. Возможно было бы правильнее расположить в справочнике редкие элементы по группам периодической системы Д. И. Менделеева, либо в порядке их алфавитных названий. Но использованная авторами классификация редких элементов общепринята, понятна широким кругам читателей и удобна тем. что в самом названии группы элементов кроется в краткой форме характерный признак, являющийся важнейшим именно для данной группы элементов. [c.6]

    В Иллинойском университете такое положение было частично исправлено организацией курса, посвященного приложениям физических методов к неорганической химии. Предлагаемая книга возникла на основе такого курса, и автор надеется, что она может принести пользу при изучении этих вопросов всеми хи-миками-неорганиками. Этот курс, по мнению автора, должен читаться на втором или первом году обучения в университете после того, как студенты прослушают вводный курс неорганической химии. За изучением основ физических методов должны следовать специальные курсы по химии ионов переходных металлов, теории групп, теории молекулярных орбиталей, неводным растворам, химии редких элементов и т. д. Такие специальные курсы должны читаться на более высоком уровне, и в них можно будет включать результаты исследований с использованием физических методов. [c.10]

    К- М. Ольшановой был использован принцип осадочной хроматографии в систематическом хроматографическом качественном анализе неорганических веществ [5]. Ею совместно с Н. М. Морозовой был разработан осадочно-хрома-тографический метод для обнаружения церия, индия, таллия и других редких элементов с использованием различных неорганических и органических осадителей [44]. [c.66]

    Индий является редким элементом в том смысле, что в мире пет ни одного района, который был бы особенно богат минералами индия. Известны только немногие минералы, содержащие более 0,1% этого элемента. Его общее содержание в земной коре оценивается в 0,11 частей на миллион (ч. н. м.). Чувствительность обычных спектральных методов анализа позволяет определять индий только в самых богатых образцах. Однако, применяя специальный метод с использованием олова в качестве внутреннего стандарта. Шоу установил предел чувствительности около 0,02 ч. п. м. в образцах весом 400 мг с точностью + 20%. [c.250]

    Р. называют простой или комплексной, если из нее извлекают соотв. один или неск. полезных компонентов. В комплексных Р. часто содержатся примеси редких металлов, напр. в бокситах-Ga, La и S , в железных P.-V, в титановых-V, S , Nb. Наличие примесей редких элементов (V, Ge, Ga, РЗЭ и др.) повышает ценность Р. Налр., добыча бедных титаномагнетитовых Р. целесообразна только при попутном извлечении ванадия (качканарский тип Р.). Вредные примеси затрудняют металлургич. передел руд (и их концентратов) или ухудшают качество получаемого продукта. Так, в ильменитовом концентрате, предназначенном для получения пигментного оксида титана сернокислотным способом, должно содержаться СгзОз < 0,05%, PjO, <0,1% обработка железных Р. усложняется при наличии Ti, S, Р или As, причем при содержании TiOj более 4% титаномагнетит непригоден для доменного процесса. Для правильного и наиб, полного использования Р. необходимо детальное изучение их элементного и вещественного (в частности, минерального) состава. [c.284]

    Комплексное использование сырья этих видов имеет большое народохозяА-ственное значение, так как позволяет уменьшить удельные затраты на производство продукции, снизить удельные капитальные вложения при строительстве новых и реконструкции действующих предприятий, улучшить, качество продукции, расширить сырьевую базу промышленности, а в некоторых случаях можег быть единственным источником для производства ряда редких элементов. [c.7]

    В процессе метаморфизма различают варианты изохимиче-ского и аллохимического характера. Химический состав метаморфических пород — один из важных диагностических признаков, позволяющих выяснить их первичную природу, термодинамические условия формирования, геохимическую эволюцию, перспективы рудоносности и возможность практического использования. Химический состав метаморфических пород в этом разделе выражен в оксидах соответствующих элементов, а в ряде случаев приводятся сведения о содержании редких элементов. [c.220]

    Использование редких металлов в черной и цветной металлургии при водит в некоторых случаях к значительному улучшению свойств основное металла. Следует отметить, что в настоящее время эта область технологи бурно развивается и возможности ее все более расширяются по мере совер шенствования способов выделения и очистки редких элементов. [c.12]

    За последние три десятилетия значительно расширились ра-ооты по исследованию и производству фтора и фтористого водорода. Интерес к данным веществам обусловлен главным образом использованием их в атомной промышленности, в металлургии легких и редких элементов, а также в ракетной технике кроме того, фтор играет существенную роль в физиологии человека. [c.5]

    В то же время простота аппаратуры и быстрота определений летучих соединений различных металлов методом газовой хроматографии могут оказать значительную помощь в производстве редких элементов. Так, например, метод газовой хроматографии мон ет использоваться в качестве контроля при ректификационном разделении хлоридов некоторых металлов. В то же время можно ожидать, что использование принципов газовой хроматографии сможет привести к препаративному (а для ряда элементов, возможно, и к промышленному) получению весьма чистых соединений, в частности галидов, сумма примесей в которых не будет превышать 10 —10 % после одного цикла очистки. По-видимому, применяя методы обогащения и рециклы (повторение циклов очистки), указанное количество примесей можно будет снизить на несколько порядков. Как пзвестно, получение соединений такой высокой степени чистоты само по себе представляет известный интерес. [c.238]

    X. машиностроения и металлообработки включает применение полимеров и композиций на их основе (пластмасс, лаков, красок, резин и др.) в качестве конструкц., изоляц., антифрикц., антикорроз. и др. материалов, что обеспечивает экономию дефицитных металлов, снижение массы и стоимости изделий, повышение их долговечности. За 1961— 1975 произ-во продукции этих отраслей возросло в 5,4 раза, а потребление пластмасс — в 7 раз. Для X. металлургич. пром-сти характерно использование методов хим. технологии, напр, кислородного дутья. В цветной металлургии все большую роль играют хим. методы обогащения руд и извлечения из них редких элементов. [c.643]

    Люмогаллион. Изучение азосоединений в качестве аналитических реагентов продолжает оставаться в сфере интересов большинства исследователей. Это объясняется наличием большого количества готовых азокрасителей, а также возможностью синтеза новых реагентов с использованием хорошо изученных схем получения известных азосоединений. Новые реагенты этого класса, синтезированные в течение последних нескольких лет, оказались особенно ценными для редких элементов и актинидов. Наряду со сложными молекулами изучаются относительно простые — моноазосоединения, которые, однако, по эффективности своего аналитического действия не уступают более сложно построенным соединениям. [c.127]

    Исследование методов определения того или иного элемента следует одновременно связывать с изучением поведения всех остальных элементов, входящих в вещество (распространенные и редкие элементы), что возможно лишь при использовании общих закономерЬостей, объединяющих свойства различных элементов. Такой общей, наиболее важной закономерностью является периодический закон Д. И. Менделеева. По этой причине в книге сделана попытка объединить в таблицах и схемах различные свойства (используемые в аналитической химии) элементов на основании их положения в таблице Д. И. Менделеева. Таблицы и схемы, благодаря своей наглядности, должны помочь ориентироваться в разнообразных методах определения элементов или в методах анализа сложных веществ, содержащих не только обычные, но и редкие и рассеянные элементы. Очевидно, таблицы [c.3]

    Многообразие задач делает естественным поиски типовых упрощенных приемов, позволяющих единообрзно приготовлять разные изотопные формы или избегать применения наиболее обременительных приемов обычного синтеза. Это требование вытекает из относительной дороговизны большинства изотопов. Последнее делает желательным снижение потерь и получение максимальных конечных выходов соответствующей изотопной формы и это же придает важность возмояшости регенерации метящего изотопа из побочных продуктов синтеза. Характерна относительная малость масштабов производства большей части веществ необычного изотопног о состава. Их продукция нередко составляет десятимиллионные и стомиллионные доли от промышленного производства аналогичных веществ обычного изотопного состава и тысячные и десятитысячные доли от производства этих же веществ в виде немеченых чистых реактивов. Это делает допустимым применение методов, неприемлемых в обычном синтезе из-за их дороговизны. Так, можно не бояться радиационнохимических и электроразрядных методов синтеза, так же как и использования свободных атомов и радикалов. Можио работать с дорогими реагентами, содержащими редкие элементы, применять необычные растворители и т. д. [c.414]

    Разнообразные синтезы меченых сложных эфиров, альдегидов, углеводородов, аминов и т. д. были осуществлены на основе гриньяровского метода получения карбоновых кислот. Этот метод был использован и у нас в ряде синтетических работ, проводивн1ихся н связи с изучением механизма крекинга [28]. Иснользонание смешанного алюминий-литиевого гидрида в качестве восстановителя сильно упростило путь к спиртам [29]. Это хороший пример эффективного использования реагентов, не применимых вследствие дороговизны в тяжелом органическом синтезе, в целях синтеза меченых соединений. По этой же причине перспективно применение весьма чистых и хорошо управляемых электрохимических методов, а также катализаторов па основе редких элементов. В последнее время мы начали обследование пути каталитического синтеза меченых веществ из СО, которую можно получать прямо из ВаСОд нагреванием с соответствующими восстановителями или из СО2. Так, в частности, гидрированием С О по Фишеру — Трошпу. можно получать смесь из очень большого числа углеводородов нормального строения с постоянным атомным содержанием С по всему ряду. [c.419]

    В работе В. В. Андреевой с сотрудникаМ и обобщены данные о коррози01нном и электрохимическо м поведении Н01вых сплавов на основе редких и тугоплавких элементов. В качестве примеров, иллюстрирующих возможности использования в технике сплавов на основе редких элементов, могут служить сплавы системы титан-молибден, обнаруживающие высокую стойкость в неокислительных кислотах и сплавы системы ниобий-тантал (30—50%), приближающиеся по своей стойкости в серной кислоте (120—140° С) к стойкости чистого тантала. В статье также описывается электрохимическое поведение подобных сплавов в широком диапазоне потенциалов. [c.6]

    Обычно уран считают редким элементом, хотя в действительности он достаточно широко распространен. Но месторождения с высоким содержанием урана встречаются очень редко. Нахождение урана в природе, извлечение его из руд, производство металлического урана и его соединений рассматриваются в гл. 8. Все изотопы урана, имеющие массовые числа в пределах от 227 до 240, радиоактивны. Из них лишь и имеют достаточно большие периоды полураспада, поэтому эти изотопы используются для приготовления тепловыделяющих элементов. Природный уран состоит почти полностью из и содержит еще лишь два изотопа, (0,72%) и (0,0058%). Присутствие являющегося одним из продуктов распада объясняется установившимся между этими двумя изотопами вековым равновесием. Уран, регенерируемый после использования его в атомных реакторах, содержит заметное количество образующегося при захвате изотопом нейтрона. Естественный уран разделяется методом газовой диффузии (см. разделы 13.2 и 13.3) на обогащенный уран, который содержит изотопа больше, чем природный уран, и на обедненный ураи, содержаший меньшие, по сравнению с природным ураном, коицентращги изотопа Для удовлетворения нужд различных типов реакторов требуется уран с любым содержанием игз5 от 0,72 (природный) до более чем 90% (полностью обогащенный). Уран, поступающий с газодпффузнонных заводов, несколько загрязнен изотопом поскольку [c.107]

    Многие элементы, полезные в естественных природных концентрациях, становятся токсичными при более высоких и более низких концентрациях. Интересны в этом отношении медь, селен и даже натрий. Все организмы океана приспособлены к жизни в 0,6 М растворе Na l, но при слишком высокой концентрации Na l становится токсичным и вызывает гипертонию, т. е. осмотическую дегидратацию. Живые организмы используют эти элементы и адаптируются к ним. Использование и применение редких элементов с рассеиванием их в окружающую среду может привести к серьезным экологическим проблемам, к которым человек никогда не привыкнет. [c.604]

    Характерной особенностью этих полимеров является то, что в их цепи входят остатки бис-(и-карбоксифенил)фосфиновой кислоты с неэтери-фицированной фосфо-группой в случае (I) и (II) и, надо полагать, в виде соли аммония в случае (III). Следовательно, два первых полимера являются слабыми кислотами, а последний — солью аммония. С этой особенностью строения связана растворимость полиэфиров в щелочах и одна из возможностей формирования нити. Надо полагать, что образование нити в данном случае можно осуществлять не только путем продавливания через фильеры расплава, но и щелочных растворов с последующей обра-боткой кислотами, т. е. так, как поступают в случае получения вискозных волокон. Нетрудно видеть, что рассматриваемые полиэфиры и полиамиды являются ионообменными смолами, катионитами, построенными по типу фосфатных ионообменных смол. Использование этих смол для выделения и разделения редких элементов возможно и заслуживает внимания. [c.286]

    Технологические же достоинства АнГ исключительно высоки АнГ легко и просто синтезируются, выделяясь из растворов в виде хорошо фильтрующихся кристаллических осадков, характеризуются высокими температурными коэффициентами растворимости и высокой (в среднем 10—30) кратностью очистки. Применение АнГ как промежуточных технологических продуктов полностью исключает дополнительные операции по очистке, так как нелетучие ионы в процесс не вводятся, перевод АнГ в очищенные соединения (простые галогениды) достигается термическим разложением при невысокой температуре и полной регенерации галогенов и межгалогенов. Все это и определяет выбор АнГ и эффективность их использования для получения наиболее чистых соединений рубидия и цезия. Этим же объясняется то обстоятельство, что АнГ широко применяются в лабораторной практике и твердо прокладывают себе путь в технологию. Выше можно найти немало примеров, подтверждающих высказанную мысль. Применение АнГ дает основания считать, что решение одной из труднейших задач в проблеме разделения близких по свойствам редких элементов (получение особо чистых соединений рубидия и цезия) можно считать найденным. Вместе с тем нельзя утверждать, что наиболее изученные к настоящему времени представители АнГ — единственно пригодные и лучшие для получения особо чистых соединений рубидия и цезия. Хотя, если исходить из наших сегодняшних знаний [c.152]


Библиография для Редкие элементы и их использование: [c.176]    [c.90]   
Смотреть страницы где упоминается термин Редкие элементы и их использование: [c.643]    [c.443]    [c.482]    [c.109]    [c.213]    [c.733]    [c.212]    [c.108]   
Химическая литература Библиографический справочник (1953) -- [ c.176 ]




ПОИСК





Смотрите так же термины и статьи:

Элементы редкие



© 2025 chem21.info Реклама на сайте