Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфоенолпируват синтез из пирувата

    Образование фосфоенолпирувата из пирувата. Синтез фосфоенолпирувата осуществляется в несколько этапов. Первоначально пируват под влиянием [c.338]

    Предшественниками глюкозы при глюконеогенезе являются пируват, оксалоацетат и фосфоенолпируват. Поэтому аминокислоты, которые превращаются в эти соединения, могут быть использованы для синтеза глюкозы (глюконеогенез из аминокислот) такие аминокислоты называют гликогенпыми. Глюконеогенез с участием аминокислот происходит особенно активно при преимущественно белковом питании, а также при голодании. В последнем случае используются аминокислоты собственных белков тканей. Катаболизм лейцина и лизина не включает стадии образования пировиноградной кислоты углеродная часть превращается непосредственно в ацетоуксусную кислоту и ацетил-КоА, из которых синтез углеводов невозможен это кетогепные аминокислоты. Тирозин, фенилаланин, изолейцин и триптофан являются одновременно и гликогенными, и кетогенными часть углеродных атомов их молекул при катаболизме образует пируват, другая часть включается в ацетил-КоА, минуя стадию пирувата. [c.340]


    Другие субстратные циклы включают превращение глюкозы в глю-козо-6-фосфат и гликолиз глюкозо-6-фосфата с образованием глюкозы (рис. 11-11, наверху, слева), синтез и распад гликогена (наверху, справа), а также превращение фосфоенолпирувата в пируват и обратное превращение пирувата в фосфоенолпируват через оксалоацетат и малат (которые осуществляются частично в митохондриях). [c.513]

    Малат и оксалоацетат, промежуточные продукты глиоксилатного пути, могут быть превращены в пируват и фосфоенолпируват (РЕР), как это показано на рис. П-6. Пируват нужен для синтеза соединений пиру-ватного семейства, а фосфоенолпируват может быть превращен во все другие промежуточные соединения биосинтетических путей (рис. I1-I). [c.481]

    При биосинтезе глюкозы, который протекает в основном по пути обращения целого ряда легко обратимых ферментативных реакций гликолиза, синтез отличается от распада в двух наиболее критических точках всей последовательной цепи реакций, а именно, в начале и конце. Так, например, в процессе катаболизма глюкоза превращается в глюкозо-6-фосфат посредством реакции трансфосфорилирования с участием АТФ однако при анаболизме она образуется из фосфорного эфира путем простого гидролиза. Пируват образуется катаболически из фосфоенолпируВата путем трансфосфорилирования - переноса фосфатной группы на АДФ в анаболических же процессах он используется у большинства организмов благодаря двум связанным реакциям сначала пируват карбоксилируется до оксалоацетата и только потом превращается в фосфоенолпируват (описанные реакции см. на Метаболической карте). [c.451]

    На этой стадии высокоэнергетическое соединение — фосфоенолпируват используется для синтеза АТФ. В физиологических условиях этот процесс необратим, так как сопровождается значительным понижением свободной энергии. Фермент, катализирующий данную реакцию, — пируваткиназа инактивируется продуктами реакции (АТФ и пируватом) по механизму отрицательной обратной связи. [c.406]

    Образующиеся пируват, оксалоацетат, 2-кетоглутарат используются частично для синтеза аминокислот, а фосфоенолпируват — углеводов. [c.621]

    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]


    Ключевые реакции цикла — расщепление изоцитрата до сукцината и глиоксилата, катализируемое изоцитрат-лиазой, и образование малата из глиоксилата и ацетил-КоА под действием малатсинтетазы. Продукты, синтезируемые в результате функционирования глиоксилатного цикла, с одной стороны, служат строительным материалом для синтеза клеточных компонентов (глюконеоге-нез, синтез аминокислот), с другой стороны, обеспечив а-ют непрерывность работы цитратсинтетазиой реакции (поставка оксалоацетата для конденсации с ацетил-КоА в цитрат). При росте иа глюкозе глиоксилатный цикл существенного значения не имеет, что, по-видимому, связано с достаточным поступлением оксалоацетата в ЦТК другим путем (карбоксилирование фосфоенолпирувата и пирувата). [c.241]

    Гликолитический путь играет двоякую роль он приводит к генерированию АТР в результате распада глюкозы и он же поставляет строительные блоки для синтеза клеточных компонентов. Регуляция скорости превращения глюкозы в пируват направлена на удовлетворение этих двух основных потребностей клетки. Реакции гликолитического пути в физиологических условиях легко обратимы, кроме реакций, катализируемых гексокиназой, фосфофруктокиназой и пируваткиназой. Фосфофруктокиназа, наиболее важный регуляторный элемент в процессе гликолиза, ингибируется высокими концентрациями АТР и цитрата и активируется АМР. Поэтому фосфофруктокиназа активна при возникновении потребности в энергии или в строительных блоках, Гексокиназа ингибируется глюкозо-6-фосфатом, который накапливается, когда фосфофруктокиназа неактивна. Пируваткиназа, другой регуляторный фермент, аллостерически ингибируется АТР, и, следовательно, превращение фосфоенолпирувата в пируват блокируется при высоком энергетическом заряде клетки. [c.44]

    Описанный выше биосинтетический путь используется для синтеза глюкозы не только из пирувата он может служить и для синтеза глюкозы из разных предшественников пирувата или фосфоенолпирувата (рис. 20-1). Главную роль играют среди них промежуточные продукты цикла лимонной кислоты цитрат, изоцитрат, а-кетоглутарат, сукцинат, фумарат и малат. Все они могут подвергаться окислению в цикле лимонной кислоты с образованием оксалоацетата, который затем под действием фосфо-енолпируват-карбоксиназы превращается в фосфоенолпируват, как показано на рис. 20-2. Однако в состав глюкозы может войти лишь по три углеродных атома от каждого из промежуточных продуктов цикла лимонной кислоты. [c.607]

    Этот синтез, ведущий от пирувата через оксалоацетат к фосфоенол-пирувату, требует двух высокоэнергетических фосфатов одного для карбоксилирования пирувата, а другого-для образования фосфоенолпирувата из оксалоацетата. [c.249]

    Следует отметить, что высокоэнергетическая связь дифосфата при этом сохраняется. У С -растений, накапливающих дикарбоновые кислоты (кукуруза, сахарный тростник), пируват-ортофосфатдикиназа тоже ответственна за синтез фосфоенолпирувата, который затем с помощью ФЕП-карбоксилазы превращается в оксалоацетат. [c.250]

    Образование глюкозы из пирувата или лактата (глюконеогенез) играет определенную роль тогда, когда эти и другие вещества служат источниками углерода в отсутствие углеводов. Синтез идет по фруктозобисфосфатному пути, за исключением трех необратимых реакций (рис. 16.14). Эти этапы катализируются регулируемыми ферментами. В животных тканях путь от пирувата к фосфоенолпирувату проходит через оксалоацетат. Первая реакция катализируется пируваткарбоксила-зой и зависит от присутствия ацетил-СоА. По-видимому, ацетил-СоА играет в данном случае роль сигнала, свидетельствующего о насыщении всех реакций, использующих это соединение, в особенности реакций ко-нечного окисления через цикл трикарбоновых кислот. Такая регуляция гарантирует получение энергии и допускает синтез глюкозы лишь при избытке ацетил-СоА. Кроме того, зависимость образования оксалоацетата от ацетил-СоА может быть существенной для обеспечения цикла трикарбоновых кислот необходимым количеством оксалоацетата. [c.495]

    Первая из них — превращение пирувата в фосфоенолпируват. Вследствие большого положительного изменения стандартной свободной энергии (Д0° = -[-31,4 кДж) пнруваткиназная реакция не происходит путем прямого обращения. Синтез фос( енолпирувата достигается обходными стадиями с использованием альтернативных реакций, осуществление которых возможно термодинамически. На этой стадии, которая катализируется митохондриальной пируваткарбоксилазой, пировиноград-ная кислота превращается в оксалоацетат по такой схемё  [c.180]

    В период пищеварения инсулин активирует про-теинфосфатазу, которая дефосфорилирует пируваткиназу, переводя ее в активное состояние. Кроме того, инсулин в печени влияет на количество ферментов, индуцируя синтез пируваткиназы и репрессируя синтез ФЕП-карбоксикиназы. Следовательно, гликолитическая реакция фосфоенолпируват пируват ускоряется при пищеварении и замедляется в постабсорбтивном состоянии. [c.157]


Смотреть страницы где упоминается термин Фосфоенолпируват синтез из пирувата: [c.421]    [c.67]    [c.35]    [c.447]    [c.227]    [c.249]    [c.496]    [c.296]    [c.61]    [c.65]    [c.68]    [c.71]    [c.320]    [c.256]    [c.167]    [c.287]   
Стратегия биохимической адаптации (1977) -- [ c.53 ]




ПОИСК







© 2025 chem21.info Реклама на сайте