Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лейцин катаболизм

Рис. 31.26. Сходство трех первых реакций катаболизма лейцина, валина и изолейцина. Обратите внимание, что реакции Рис. 31.26. Сходство трех <a href="/info/362060">первых реакций</a> катаболизма лейцина, валина и изолейцина. Обратите внимание, что реакции

    Катаболизм аминокислот с разветвленной цепью лейцина, изолейцина и валина—преимущественно осуществляется не в печени (место распада большинства остальных аминокислот), а в мышечной и жировой тканях, в почках и ткани мозга. Сначала все три аминокислоты подвергаются трансаминированию с а-кетоглутаратом под действием одного общего и специфического фермента—аминотрансферазы аминокислот с разветвленной цепью (КФ 2.6.1.42) (не содержится в печени) с образованием соответствующих а-кетокислот. Последующее окислительное декарбоксилирование а-кетокислот приводит к образованию ацил-КоА-производных. [c.459]

Рис. 31.25. Катаболизм аминокислот с разветвленной цепью у млекопитающих. Реакции 1—3 — общие для всех трех аминокислот далее пути их катаболизма расходятся. Перечеркнутые стрелки показывают стадии, на которых метаболизм блокирован в случае двух редко встречающихся заболеваний 2—болезни кленового сиропа (нарушен катаболизм всех трех аминокислот), 3 — изоВалериановой ацидемии (нарушен катаболизм лейцина). Рис. 31.25. <a href="/info/100158">Катаболизм аминокислот</a> с <a href="/info/117813">разветвленной цепью</a> у млекопитающих. Реакции 1—3 — общие для всех трех <a href="/info/197500">аминокислот далее</a> пути их катаболизма расходятся. Перечеркнутые стрелки показывают стадии, на <a href="/info/1355150">которых метаболизм</a> блокирован в случае <a href="/info/1696521">двух</a> редко встречающихся заболеваний 2—<a href="/info/566356">болезни кленового сиропа</a> (нарушен катаболизм всех трех аминокислот), 3 — <a href="/info/1350342">изоВалериановой ацидемии</a> (нарушен катаболизм лейцина).
    Метаболические нарушения катаболизма разветвленных аминокислот (лейцина, валина и изолейцина) [c.340]

    Предшественниками глюкозы при глюконеогенезе являются пируват, оксалоацетат и фосфоенолпируват. Поэтому аминокислоты, которые превращаются в эти соединения, могут быть использованы для синтеза глюкозы (глюконеогенез из аминокислот) такие аминокислоты называют гликогенпыми. Глюконеогенез с участием аминокислот происходит особенно активно при преимущественно белковом питании, а также при голодании. В последнем случае используются аминокислоты собственных белков тканей. Катаболизм лейцина и лизина не включает стадии образования пировиноградной кислоты углеродная часть превращается непосредственно в ацетоуксусную кислоту и ацетил-КоА, из которых синтез углеводов невозможен это кетогепные аминокислоты. Тирозин, фенилаланин, изолейцин и триптофан являются одновременно и гликогенными, и кетогенными часть углеродных атомов их молекул при катаболизме образует пируват, другая часть включается в ацетил-КоА, минуя стадию пирувата. [c.340]

    При распаде изолейцина р-окисление идет до конца обычным образом с образованием ацетил-СоА и пропионил-СоА. Однако в ходе катаболизма лейцина после дегидрирования, которым начинается р-окис-ление, происходит присоединение двуокиси углерода, осуществляемое биотинилферментом (гл. 8, разд. В). Двойная связь, сопряженная с карбонилом тиоэфира, придает этому карбоксилированию сходство со стандартной реакцией р-карбоксилирования. Зачем понадобился этот лишний СОг Метильная группа в Р-положении блокирует полное р-окисление, но при этом остается возможным альдольное расщепление, приводящее к образованию ацетил-СоА и ацетона. Дальнейший метаболизм ацетона сопряжен с определенными трудностями. В случае присоединения СОг продуктом оказывается ацетоацетат, катаболизм которого легко доводится до конца через его превращения в ацетил-СоА. [c.116]


    Коллагены — медленно обменивающиеся белки время их полужизни измеряется неделями или месяцами (при расчете на тотальный коллаген организма). Большинство протеолитических ферментов тканей, а также пищеварительные ферменты не гидролизуют нативный коллаген. Ключевую роль в катаболизме фибриллообразующих коллагенов играют МПМ группы коллагеназ. Коллагеназа перерезает все три пептидные цепи молекулы коллагена в одном месте, примерно на V4 расстояния от С-конца, между остатками глицина и лейцина (или изолейцина) (рис. 18.17). Образующиеся фрагменты растворимы в воде и легко денатурируются, после чего их пептидные связи становятся доступными для гидролиза разными пептидгидролазами. Распад коллагена — единственный источник свободного гидроксипролина в организме. Преобладающая часть гидроксипролина катабо-лизирует ся, а часть выделяется с мочой, главным образом в составе небольших пептидов (ди- и трипептидов). Поэтому содержание гидроксипролина в крови и [c.447]

    Как отмечалось выше, скелетные мышцы служат основным резервом белка в организме. Они обладают также высокой активностью в отношении деградации одних и синтеза других аминокислот. У млекопитающих именно мышцы являются главным местом катаболизма аминокислот с разветвленной цепью. Мышечная ткань окисляет лейцин до СО2 и превращает углеродный скелет аспартата, аспарагина, глутамата, изолейцина и валина в интермедиаты цикла трикарбоновых кислот. Способность мышц разрушать аминокислоты с разветвленной цепью при голодании и диабете возрастает в 3— [c.341]

    Катаболизм лейцина и некоторых изопреноидных соединений [c.199]

    НЫЙ скелет аминокислот с разветвленной боковой цепью (лейцина, изолейцина и валина) деградирует в результате реакций, аналогичных реакциям катаболизма жирных кислот. [c.319]

    Реакции, специфичные для катаболизма лейцина (рнс. 31.27) [c.337]

    Кроме того, ТДФ принимает участие в окислит, декарбоксилировании кетокислот с разветвленным углеродным скелетом - 2-оксоизовалериановой, З-метил-2-оксовалериано-вой и 4-метил-2-оксопентановой, являющихся продуктами дезаминирования аминокислот валина, изолейцина и лейцина. Эти р-ции играют важную роль в катаболизме белков. [c.564]

    Аминокислоты с разветвленной боковой цепью, валин, лейцин и изо лейцин, часто распадаются в организме следующим образом. Пере аминирование приводит к образованию а-кетокислоты, которая под вергается окислительному декарбоксилированию с 06pa30BaHnei ацил-СоА-производного. Последнее затем подвергается р-окисле нию. Какие продукты в этом случае образуются из изолейцина Каким образом они затем превращаются в СО2 Какие затрудненш могут встретиться при катаболизме валина и лейцина Попытай тесь предложить рациональную схему соответствующих ката боли ческих путей. Сравните свои предложения с реально установленны ми путями, приведенными на рис. 14-11. [c.357]

    При дезаминировании некоторых аминокислот (аланина, аспарагиновой, глутаминовой кислот) образуются а-кетокислоты (пировиноградная, а-кетоглутаровая, щавелевоуксусная), принадлежащие к числу промежуточных продуктов клеточного катаболизма. Больщинство же возникающих при этом органических кислот подвергается сначала предварительным превращениям, приводящим к появлению соединений, способных прямо включаться в основные катаболические пути клетки. Например, распад -лейцина в конечном итоге приводит к образованию ацетил-КоА — исходного субстрата ЦТК. Такова энергетическая сторона метаболизма бактерий-аммонификаторов. [c.402]

    Аминокислоты в глюконеогенезе. Обмен белков тесно связан с обменом углеводов через цикл трикарбоновых кислот. Атомы углерода различных аминокислот мотут преобразовываться в ацетил-КоА или промежуточные продукты цикла, т. е. аминокислоты могут служить источником в синтезе углеводов. По способности участвовать в глюконеогенезе аминокислоты делятся на три группы I) гликогенные, 2) кетогеи-иые, 3) гликогенные и кетогенные. Гликогенные — это аминокислоты, которые могут быть предшественниками пировиноградной кислоты, а следователбно, и глюкозы. К гликогенным относятся 15 аминокислот аланин, аргинин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, глицин, гистидин, метионин, цистеин, пролин.серин, треонин, триптофан, валнн. Кетогенные — это, аминокислоты, при катаболизме которых может образоваться ацетоуксусная кислота. Лейцин — только кетогевяая аминокислота. Четыре аминокислоты (фенилаланин, тирозин, лизин, изолейцин) являются одновременно и гликогенными, и кетогенными. [c.6]

    Химическая стратегия катаболизма изо-лейцина. Изолейцин расщепляется до про-пионил-СоА и ацетил-СоА в последовательности реакций, состоящей из шести этапов. [c.599]

    Дальнейшая судьба углеродного скелета у разных аминокислот различна. Лишь немногие продукты дезаминирования (пировиноградная, 2-оксоглутаровая, щавелевоуксусная кислоты) являются одновременно промежуточными продуктами центральных путей катаболизма. Другие углеродные скелеты через специальные катаболические пути вовлекаются в промежуточный обмен. Мы не ставили здесь задачу охарактеризовать все изйестные пути распада. В качестве типичного примера на рис. 14.15, представлен путь расщепления лейцина. Особого внимания заслуживает здесь З-гидрокси-З-метилглутарил-СоА-важный промежуточный продукт в синтезе стероидов и каротиноидов. [c.433]


    При дезаминировани аланина, аспарагиновой, глутаминовой кислот образуются а-кетокислоты (пировиноградная, а-кетоглутаровая, щавелевоуксусная), принадлежащие к промежуточным продуктам катаболизма. Большинство органических кислот, образующихся при дезаминировании аминокислот, подвергаются предварительным превращениям, в результате которых образуются соединения, способные прямо включаться в основные метаболические пути клетки. Например, при распаде L-лейцина в конечном итоге образуется ацетил-КоА, способный непосредственно включаться в цикл трикарбоновых кислот. [c.429]

    Хассан и Гринберг [450] исследовали превращения ОЬ-нор-лейцина и ОЬ-норвалина, меченных С , в организме крысы. Судя по выделению радиоактивной СО2, эти аминокислоты распадались довольно быстро, но в белки они, по-видимому, не включались. Гринберг [451] дает следующую схему катаболизма норвалина и норлейцина  [c.365]

    ЛОТЫ, В особенности лейцин, активируют ГДГ, присоединяясь к ней в участках, разобщенных от тех участков, в которых происходит связывание нуклеотидов. Эффект лейцина преодолевает ингибирующее действие аденилатов и таким образом обеспечивает усиленное расщепление аминокислот, ускоряя удаление их азота, как только они начинают накапливаться. Это будет происходить даже в том случае, если во время накопления аминокислот общая потребность в высокоэнергетических фосфатах (а следовательно, и в катаболизме аминокислот) не очень велика. [c.187]

    Фермент пируваткарбоксилаза катализирует первую реакцию превращения трехуглеродных предшественников в глюкозу (глюконеогенез). Ацетил-КоА — положительный модулятор реакции, т.е. при его избытке стимулируется карбоксилирование пирувата. (Образованная ЩУК обеспечивает окисление большого количества молекул ацетил-КоА. Поскольку ЩУК образуется преимущественно из углеводов, а ацетил-КоА — из жирных кислот, говорят, что жиры горят в пламени углеводов .) Ацетил-КоА-карбоксилаза катализирует образование малонил-КоА, играющего ведущую роль в биосинтезе жирных кислот. Для превращения пропионата в сукцинат необходим этап карбоксилирования, катализируемого пропионил-КоА-карбо-ксилазой. Это важный путь метаболизма жирных кислот с короткой цепью углеродных атомов и продуктов распада жирных кислот с нечетным числом углеродных атомов. Особое значение этот путь имеет для взаимодействия кишечной микрофлоры и организма хозяина. В катаболизме лейцина и некоторых изопреноидов участвует реакция, катализируемая Р-метилкротонил-КоА-карбоксилазой. [c.361]

    Как и можно было предполагать, учитывая структурное сходство L-лейцина, L-валина и L-изо-лейцина, их катаболизм на первых этапах идет по общему пути. Затем этот путь разветвляется и скелет каждой аминокислоты трансформируется по собственному пути с образованием амфиболических интермедиатов (рис. 31.25 и 31.26). В зависимости от природы этих амфиболических конечных продуктов аминокислоты относят к типу гликогенных (валин), кетогенных (лейщш) или к обоим типам (изолейщ1н). Многие из рассматриваемых реакции аналогичны реакциям катаболизма жирных кислот с линейными и разветвленными цепями. В силу сходства начальных реакций катаболизма всех трех аминокислот, которое видно на рис. 31.26, их удобно рассматривать вместе. В последующем тексте номера реакций будут соответствовать тем, которые приведены на рис. 31.26—31.29. [c.337]

    Подобно тому как это было в случае валина и лейцина, первые сведения о катаболизме изолейцина были получены в ходе наблюдений над животными, которые содержались на различных рационах в результате были выявлены гликогенные и слабоке-тогенные свойства изолейцина. Возможность синтеза гликогена из изолейцина была подтверждена при использовании D20. С помощью С-меченных со- [c.339]


Смотреть страницы где упоминается термин Лейцин катаболизм: [c.117]    [c.546]    [c.346]    [c.341]    [c.427]   
Биохимия человека Т.2 (1993) -- [ c.337 , c.338 ]

Биохимия человека Том 2 (1993) -- [ c.337 , c.338 ]




ПОИСК





Смотрите так же термины и статьи:

Лейцин



© 2025 chem21.info Реклама на сайте