Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм отрицательной адсорбции

    Критический потенциал коррозионного растрескивания — это такой потенциал, выше которого происходит адсорбция разрушающих ионов, а ниже — их десорбция. В принципе, он может быть как отрицательнее, так и положительнее коррозионного потенциала. Ингибирующие анионы, сами не вызывающие растрескивания, конкурируют с разрушающими ионами за адсорбционные места требуется приложить более высокий потенциал для достижения поверхностной концентрации разрушающих ионов, достаточной для адсорбции и растрескивания. Когда под воздействием ингибирующих ионов критический потенциал становится выше потенциала коррозии, растрескивание прекращается, потому что разрушающие ионы больше не могут адсорбироваться. Механизм конкурентной адсорбции сходен с ранее описанным механизмом питтингообразования, критический потенциал которого также сдвигается в положительном направлении в присутствии посторонних анионов (разд. 5.5.2). [c.141]


    Из уравнения (1.41) следует, что если поверхностное натяжение а увеличивается с повышением концентрации С, т. е., если (йо/йС) >0, то Г < О или концентрация растворенного вещества в поверхностном слое меньше, ч.ем во всем объеме (отрицательная адсорбция). Справедливо и обратное утверждение если йо/йС)<0, то Г > О (положительная адсорбция). Для водных растворов неорганических солей (йо/йС)> (поверхностно-инактивные системы). Поэтому на поверхности мембраны из растворов адсорбируется слой воды б. Если в мембране имеются поры диаметром й = 26, вода под действием перепада давлений проникает через эти поры (рис. 1.4). Глюкауф [29] и Бин [30] экспериментально показали, что концентрация электролита в мембране заметно ниже, чем в исходном растворе. Однако расчеты, проведенные Скетчардом 31], противоречат концепции отрицательной адсорбции солей из водных растворов на ацетатных мембранах. Этой гипотезе о механизме обратного осмоса противоречит также и тот факт, что методом обратного осмоса удается разделить растворы поверхностно-активных веществ, хотя в этом случае, согласно уравнению Гиббса, на мембране должна адсорбироваться не вода, а растворенное вещество. [c.25]

    Полярная адсорбция играет важную роль в коллоидных системах. Раньше было указано, что суть этого вида адсорбций, называемой иначе обменной, заключается в том, что адсорбент поглощает из раствора определенные ионы, посылая в то же время в раствор одноименные ионы в эквивалентном количестве. Механизм обменной адсорбции на поверхности коллоидных частиц сводится к тому, что адсорбируемые ионы становятся на место компенсирующих ионов, окружающих ядро мицеллы. Отрицательные коллоиды, мицеллы которых содержат в качестве противоионов катионы, адсорбируют из растворов путем обмена только катионы, и, наоборот, положительные коллоиды, содержащие анионы в качестве противоионов, адсорбируют только анионы. [c.199]

    Для объяснения механизма процесса обратного осмоса выдвинуто несколько гипотез [256, с. 83] просеивание, молекулярная диффузия, активированная диффузия, отрицательная адсорбция и др. [c.151]

    В большинстве газовых реакций, кажущихся гомогенными, в действительности принимает участие материал стенок сосуда следовательно, такие реакции являются гетерогенно-каталитическими. Так, например, известно, что вода проявляет в некоторых случаях отрицательный каталитический эффект, но оказалось, что это обусловлено адсорбцией воды и отравлением катализатора-материала стенок сосуда. Несколько гомогенно-каталитических реакций в действительности представляют собой цепные реакции. Вещества, которые инициируют цепные реакции, иногда называют сенсибилизаторами, а не катализаторами. В качестве примера можно назвать разложение озона, которое само по себе протекает очень медленно, но сильно ускоряется в присутствии хлора согласно цепному механизму  [c.81]


    Механизм подобного действия ПАВ связан с тем, что АПАВ повышают отрицательный заряд структурных составляющих торфа и, соответственно, содержание связанной воды (см. табл. 4.1), тогда как при адсорбции КПАВ отрицательный потенциал торфяных ассоциатов и содержание связанной воды снижаются. Соответственно меняется и процесс миграции ионов в торфе, а именно АПАВ снижают, а КПАВ — интенсифицируют перераспределение ионов в торфе в процессе влагообмена [c.80]

    Таким образом, оптимальную технологию полимерного воздействия необходимо выбирать с учетом описанных выше обменных микропроцессов, в которых одну из главных ролей играет адсорбция. Минерализация пластовых вод может как положительно, так и отрицательно влиять на механизм нефтеотдачи при осуществлении метода полимерного воздействия. Поэтому надо тщательнее проводить исходные лабораторные эксперименты по установлению начальных параметров процесса. В некоторых случаях перед началом полимерного воздействия целесообразно закачать в пласт (промыть его) опресненную воду (20—30 % порового объема). Следует добиваться обязательного соблюдения проектной (рассчитанной) технологии воздействия не допускать периодической закачки поли.мерного раствора, смешения полимеров разных типов и марок. Особенно это важно при осуществлении опытнопромышленных испытаний метода. [c.166]

    Различают три механизма образования двойных электрических слоев 1) поверхностная диссоциация функциональных групп, 2) адсорбция ионов электролитов и 3) ориентирование полярных молекул на межфазной границе. В результате указанных взаимодействий поверхность со стороны одной фазы заряжается положительно, а со стороны другой—отрицательно. [c.77]

    Ко второму типу механизма образования двойного электрического слоя и возникновения разности потенциалов между двумя фазами относится случай, когда ни положительно, ни отрицательно заряженные частицы не покидают свои фазы в сколько-нибудь заметных количествах, однако частицы одного знака адсорбируются на поверхности раздела в больших количествах, чем частицы другого знака. Возникновение двойного электрического слоя при этом обусловлено ориентацией адсорбированных молекул растворителя и перераспределением ионов. Адсорбция [c.165]

    Образование ДЭС на границе уголь — раствор электролита можно рассматривать, по Фрумкину, и как электродный процесс, проводя аналогию между углем и газовым электродом. Уголь, адсорбировавший Ог из атмосферы, при контакте с раствором посылает в него ионы ОН , приобретая положительный заряд, уголь же, выдержанный предварительно в атмосфере Нг, ведет себя как водородный электрод, посылая ионы Н+ и заряжаясь отрицательно . Обе точки зрения на механизм образования ДЭС на поверхностях типа угля могут быть согласованы благодаря общности процессов адсорбции и поверхностной диссоциации. [c.184]

    Таким образом, с помощью мессбауэровской спектроскопии можно получить информацию, необходимую для определения структуры химических соединений, выявления тонких деталей химической связи и описывать быстрые реакции. Возможно и чисто аналитическое применение, которое в дальнейшем будет расширяться. Чувствительность метода позволяет даже исследовать динамику атома примеси при концентрации 10- % (ат.), изучать радиационные и другие дефекты в материалах (в том числе на поверхности высокодисперсных систем и в пленках), механизм воздействия ультразвука и радиочастотных колебаний на параметры технологических процессов, диффузию атомов в твердых телах и на их поверхности. Установлено, например, что ионы Ре -ь, локализованы на поверхности силикагеля и цеолита даже после адсорбции воды, в то время как в ионообменной смоле КУ-2 после адсорбции воды ионы Ре + диффундируют в поры смолы, образуя диффузный слой, компенсирующий отрицательный заряд сульфогрупп. По-видимому, большое значение будут иметь методы определения состояния элементов с переменной степенью окисления (табл. 31.8), выявления фаз, включенных в сложные композиции в незначительных количествах, и др. [c.748]

    Труднее объяснить часто наблюдаемые переходы между поведением I и II типов, вызванные изменениями температуры и приложенных напряжений. Наиболее вероятно, что такие переходы обусловлены многочисленными переменными параметрами, связанными с типом и морфологией оксида, механизмом ползучести и составом сплава. Например, можно ожидать, что толстые окалины, образующиеся при высоких температурах на стойких к окислению сплавах, особенно с высоким содержанием хрома или алюминия, будут повышать сопротивление ползучести на воздухе. Высказывались предположения, что изменение типа поведения с температурой отражает переход от высокотемпературного упрочнения, связанного с окалиной, к отрицательному воздействию адсорбции газов (особенно в вершинах трещин) при более низких температурах [23—27]. В то же время изменения температуры могут оказывать и косвенное влияние, изменяя преобладающий тип ползучести [1—6]. Это может быть причиной и переходов, вызванных изменением уровня проложенных напряжений [1—6]. Действительно, в состоянии очень высокого напряжения может отсутствовать стадия установившейся ползучести и тогда по существу мы наблюдаем влияние среды на режим ускоренной ползучести или на разрушение материала. В связи с этим следует заметить, что, к сожалению, большинство исследований коррозионной ползучести, а также и большинство технических испытаний на ползучесть [1—6] не сопровождаются непрерывной регистрацией деформации при определении времени до разрушения (длительной прочности). [c.41]


    В то время как амины и аминокислоты, несущие положительный заряд, более прочно удерживаются при более высоких значениях pH, для отрицательно заряженных сорбатов справедливо обратное. Систематические исследования, проведенные на серии N-бензоил-о, L-аминокислот, позволили глубже понять механизм взаимодействия сорбата с белком. Влияние изменения свойств подвижной фазы на величины к VI а демонстрирует рис. 7.10. Во-первых, удерживание в значительной степени возрастает с усилением гидрофобного характера аминокислоты (Ser > А1а> Phe). Во-вторых, увеличение суммарного отрицательного заряда белка с увеличением pH вызывает уменьшение к для всех шести соединений (вследствие ионного взаимодействия). Далее, влияние концентрации буфера можно объяснить усилением адсорбции вследствие ионных взаимодействий при низкой ионной силе. Небольшое, но вполне заметное возрастание к для наиболее сильно удерживаемых сорбатов при высоких концентрациях буфера вероятнее всего является результатом усиления гидрофобных взаимодействий. Поскольку ионные (кулоновские) и гидрофобные взаимодействия по-разному подвержены влиянию ионной силы, то оба эффекта приводят к возникновению минимума в адсорбции сорбата (к ) в определенной точке. И наконец, совершенно очевидно влияние органического растворителя-модификатора он всегда приводит к понижению удерживания сорбата и тем сильнее, чем более гидрофобен сорбат. Влияние pH и ионной силы на удерживание незаряженных соединений невелико, но выражено вполне отчетливо. Оно связано исключительно с изменениями в связывающем центре ХНФ. Добавление пропанола-1 вызывает уменьшение удерживания по сравнению с наблюдаемым у заряженных сорбатов, что свидетельствует о преимущественном вкладе в удерживание гидрофобных взаимодействий. Это подтверждает также наблюдаемое очень большое влияние на удерживание длины цепи алканола-1. Высшие спирты являются значительно более эффективными конкурентами за связывающий центр, а потому вызывают более быстрое элюирование сорбата. Возможность регулирования удерживания путем изменения подвижной фазы, которую демонстрирует схема 7.6, говорит о том, что эту особенность данных хроматографических систем можно использовать в целях оптимизации разделения. [c.135]

    Характерно особенностью процесса активированной диффузии, позволяющей отличить его от конкурирующих процессов, является увеличение скорости адсорбции с повышением температуры. В случае адсорбции азота на цеолите NaA в одной температурной области наблюдается активированная диффузия, а в другой — преобладает процесс с отрицательным температурным коэффициентом, протекающий по другому механизму. Это приводит к появлению максимума на изобаре адсорбции (рис. 8.15), положение которого зависит от длительности протекания адсорбции и от размера кристаллических частиц цеолита. Если уравнение (8.30) выполняется, то зависимость величины адсорбции от должна иметь вид прямой и только на начальном участке в результате быстрой адсорбции на внешней поверхности возможны отклонения. [c.685]

    Более сложный механизм адсорбции из раствора приводит к тому, что в отличие от адсорбции газов, которые всегда адсорбируются на твердой или жидкой поверхности, в данном случае адсорбируются только некоторые вещества. Для этой цели, как уже говорилось, требуется, чтобы они взаимодействовали с молекулами растворителя слабее. Если же энергия взаимодействия растворитель — растворенное вещество больше, чем энергия взаимодействия растворитель— растворитель, адсорбция будет отрицательной (т. е. концентрация их на поверхности будет меньше, чем в объеме раствора). Это и характерно для водных растворов сильных электролитов, ионы которых стремятся уйти в раствор, чтобы быть окруженными со всех сторон молекулами воды. [c.62]

    В случае сильного взаимодействия как хвоста, так и головы с поверхностью будут формироваться структуры, представленные на рис. 5.20, е,/. Следует отметить, что по убедительным результатам [82] адсорбция катионного ПАВ (ЦТАБ) на сильно отрицательно заряженной серебряной поверхности протекает по механизму, представленному на рис. 5.20, е,/, а не 5.20, а, хотя большинство исследователей предполагают именно последний. Вероятно, в зависимости от особенностей ПАВ и поверхности, могут иметь место все структурные типы, приведенные на рис. 5.20. В случае полимерных ПАВ ситуация более сложная и запутанная. [c.172]

    Как уже отмечалось [45], цеолиты могут быть отнесены к адсорбентам со специфической поверхностью, несущей сосредоточенные положительные заряды, расположенные около рассредоточенных отрицательных зарядов решетки. Поэтому при адсорбции полярных молекул и неполярных молекул с я-связями будут проявляться специфические взаимодействия. Изменяя электронную структуру поверхности путем ионного обмена, можно подойти к выяснению механизма адсорбционных взаимодействий с молекулами адсорбата различного электронного строения. В связи с этим в следующем разделе статьи будет рассмотрена природа адсорбции на цеолитах, модифицированных методом катионного обмена. Мы ограничимся лишь рассмотрением роли катионов, компенсирующих заряд решетки цеолита, в явлениях адсорбции молекул разного геометрического и электронного строения. [c.156]

    Адсорбция. С учетом различных механизмов действия (адсорбции, образования соединений с отделяемыми компонентами и т. д.) в качестве коллекторов были исследованы галогениды и другие малорастворимые соли серебра. Известно, что свежие осадки AgX имеют поверхностный заряд, знак которого зависит от заряда ионов, участвующих в реакции осаждения и находящихся в избытке, т. е. отрицательный при избытке ионов X , сорбированных осадком, и положительный при избытке Ag+. Осадок AgX — эффективный сорбент наряду с ионами элементов на его поверхности могут удерживаться ионы различных молекул и полярные вещества на этом принципе основано, е частности, применение адсорбционных индикаторов в аргентометрическом титровании по методу Фаянса. При этом катионы находятся на поверхности отрицательно заряженных осадкон, анионы — на поверхности положительно заряженных. [c.423]

    Измерения отрицательной адсорбции производились нами при исследовании механизмов стабилизации и коллоидной защиты. Было установлено, что общее количество связанной воды (нерастворяющий объем) весьма значительно и составляет до водной фазы бентонитовых суспензий. Поэтому при адсорбционных измерениях необходимо учитывать количество связанной веды, что обычно игнорируется. [c.30]

    Н. И. Мелиховой и С. Ф. Дудкиным на примере омагничивания раствора сульфата железа. Оказалось, что в этом случае снижается отрицательная адсорбция ионов железа на поверхности раздела раствор — воздух. По-ви-дпмому, рассматриваемое явление связано со значительным уменьшением гидратации катиона железа [157]. Таким образом, временное изменение магнитной обработкой дальней гидратации ионов в водных системах может явиться одним из существенных механизмов регулирования физико-химических свойств последних. [c.135]

    Аннотация Предложен молекулярно-кинетический механизм возникновения диффузного градиента концентрации в нерастворяющем слое водного раствора на границе с поверхностью твердого тела. Сущность его заключается в том, что молекулы растворенного вещества, подходя к стенке на расстояние меньшее длины их активированного скачка, стремятся активно удалиться от нее, т.к. при этом изменяется соотношение длины скачка в направлении к стенке и от нее. При этом молекулы воды испытывают такую же силу, отталкивающую их от стенки, однако, в отличие от них ведут себя как пассивная среда, которая первой стремится заполнить пространство, образовавшееся после удаления молекул растворенного вещества. Это названо эффектом отталкивания молекул от стенки. На границе лиофильной поверхности твердого тела с водным раствором существует тонкий слой жидкости толщиной в несколько молекулярных размеров, где наблюдается диффузное распределение растворенных в воде компонентов, а именно уменьшение их концентрации по направлению к этой поверхности нередко называемое отрицательной адсорбцией. Этот факт был известен еще в начале века для коллоидных систем. В дальнейшем на его основании А.В.Думанским (1937) были развиты представления о диффузном перастворяющем пограпичпом слое жидкости — лиосфере около коллоидных частичек. Б.В.Дерягиным (1986) на этой же основе развита теория о слое связанной жидкости и расклинивающем давлении тонких пограничных пленок около твердых поверхностей. [c.239]

    Согласно протонному механизму, указанные комплексы преимущественно образуются за счет С-атомов с минимальным отрицательным зарядом, т. е. вторичных атомов С. В то же время гидрид-ионный механизм характерен для С-атомов с максимальной электронной плотностью, т. е. для первичных атомов. В соответствии с развиваемыми взглядами, изменение направления реакции связано с изменением зарядов металла при увеличении давления водорода и соответственно его адсорбции усиливаются электроноакцепторные свойства металла и его способность вытеснять прогон при образовании моноадсорбированного комплекса. В связи с этим с ростом давления водорода увеличивается доля молекул октана, реагирующих по протонному механизму в реакцию вступают вторичные атомы углерода с последующим образованием дизамещенных циклов — 1-метил-2-этилциклопентана и о-ксилола. [c.235]

    Второй путь образования двойного слоя заключается в том, что поверхностные молекулы частиц твердой фазы диссоциируют в жидкости на ионы. Например, метакремниевая кислота НгЗЮз отдает в раствор ион водорода, в результате на поверхности остаются потенциалообразующие ионы с отрицательным зарядом. Из ионов водорода на твердой поверхности возникает адсорбционный слой, который имеет положительный заряд. Наконец, возможна специфическая адсорбция из жидкой фазы на электрически нейтральных поверхностях некоторых минералов [43]. Она обусловлена дисперсионными силами Ван-дер-Ваальса или Лондона, которые зависят от электрической поляризации атомов твердой поверхности пор ионами жидкости и поляризации самих ионов. При этом адсорбируются в первую очередь многозарядные ионы. Этот механизм возможен, например, в известняках. Вообще же примеры таких схем мало изучены. Независимо от пути образования двойной электрический слой имеет одну и ту же структуру. [c.112]

    Механизм КРН латуней был предметом многих исследований. Сплавы высокой чистоты и монокристаллы а-латуни также растрескиваются под напряжением в атмосфере NH3 [27]. В под-тверждение электрохимического механизма показано, что в растворах NH4OH потенциалы границ зерен поликристаллической латуни имеют более отрицательные значения, чем сами зерна. В растворах Fe lg, где коррозионное растрескивание не происходит, не наблюдается и подобного распределения потенциала [28]. Согласно другой точке зрения, на латуни образуется хрупкая оксидная пленка, которая под напряжением постоянно растрескивается, а обнажившийся подлежащий металл подвергается дальнейшему окислению [29, 30]. Возможно также, что структурные дефекты в области границ зерен напряженных медных сплавов способствуют адсорбции комплексов ионов меди с последующим ослаблением металлических связей (растрескивание под действием адсорбции). В соответствии с этим предположением, ионы Вг и С1 действуют как ингибиторы, вытесняя с поверхности комплекс металла (конкурирующая адсорбция). [c.338]

    Адсорбция на переходнопористых телах происходит в основном по механизму капиллярной конденсации. Капиллярная конденсация начинает проявляться при определенной степени заполнения адсорбента или при определенном значении давления пара, характерном для данной системы. К этому моменту поверхностная энергия адсорбента практически полностью скомпенсирована в результате полимолекулярной адсорбции, а микропоры заполнены адсорбатом. С увеличением давления газа или пара заполняются конденсатом все более крупные поры, размеры радиусов менисков в которых находятся в соответствии с уравнением капиллярной конденсации Кельвина (отрицательная кривизна)  [c.135]

    Во всех рассуждениях, посвященных вопросу о механизме действия электростатических сил, использовалась идеализированная модель поверхности ионного кристалла, которая, как было указано в разделе IV, 2, получалась бы г[ри разрезании кристалла идеально острой бритвой. Отсутствие в нашем распо-рян<ении сведений относительно тех структурных особенностей, которые отличают поверхность кристалла от его объема, не позволяет сделать не только количественные, но и полуколи-чественные выводы о реальных энергиях адсорбции, обусловленных электростатическими силами. Можно утверждать только, что у большинства ионных кристаллов проявляется тенденция к образованию внешней адсорбирующей поверхности за счет отрицательных ионов, например ионов галоида и кислорода. Это явление будет снова упоминаться в дальнейшем (см,, например, разделы V, 5 и VI, 5), [c.35]

    Органические анионы, например анионы алкилсульфокислот предельного ряда, при адсорбции на электроде увеличивают отрицательное значение -потенциала, что приводит к ингибированию реакции восстановления анионов первой группы. Поскольку органические анионы уменьшают скорость разряда анионов, подобно нейтральным ПАОВ, то для установления механизма действия органических анионов представляют интерес данные по влиянию органических анионов на скорость реакции окисления катионов Eu2+ (рис. 5.9). В соответствии с уравнением (5.46) органические анионы ускоряют реакцию окисления европия, что указывает на электростатический характер их действия. [c.175]

    После стадии, на которой происходит слияние островков, структура пленки напоминает сетку. Электропроводность таких пленок, связанная с островками, мостиками и зазорами между ними, очень чувствительная к физическим и электрическим изменениям прежде всего нитевидных мостиков из-за старения, отжига и адсорбции. Температурный коэффициент сопротивления такой пленки есть сумма положительного металлического (островки) и отрицательного активационного (зазора) вкладов. Электропроводность пористых пленок в значительной степени определяется рассеянием на межгранулъных границах, диффузным рассеянием от поверхностей зерен и межгранульным туннелированием. Этими же механизмами определяется электропроводность сплошных сильно гранулированных пленок различных материалов, таких как тугоплавкие металлы. Сложный механизм электропроводности пористых пленок труден для анализа [3]. По мере заполнения сетчатой структуры пористость убывает, пленка в конце концов становится сплошной. [c.490]

    Образование слоя хемосорбционного комплекса Л1е(0Н)адс снижает энергию поверхности, и последующий процесс адсорбции воды протекает по ранее рассмотренному механизму конденсации (для полимолекулярной адсорбции). Однако свойства воды в таком физически сорбированном слое вследствие действия поверхностных сил отличаются от свойств объемной воды1 Структурирование воды в тонких стенках, по-видимому, влияет на концентрацию и подвижность гидратированных ионов, образующихся по реакции Н20ч=ьН+адс-Ь -ЬОН-адс. Учитывая, кроме того, чрезвычайно малый объем физически адсорбированной воды ( 10 моле- ул/см2), нет оснований ожидать заметных скоростей реакций с участием гидратированных ионов. Действительно, если даже допустить, что ионное произведение В0ДЫ1 в адсорбированном слое такое же, как и в ее объеме (10 ), то количество ионных пар в адсорбированной фазе при п= 15-т-20 статистических монослоев составляет около 10 на 1 см . Эта величина еще меньше в области отрицательных температур, где ионное произведение воды (льда) быстро уменьшается. [c.58]

    Механизм действия флокулянтов основан на следующих явлениях адсорбции молекул флокулянта на поверхности коллоидных частиц ретикуладии (образование сетчатой структуры) молекул флокулянта слипании коллоидных частиц за счет сил Ван-дер-Ваальса. При действии флокулянтов между коллоидными частицами образуются трехмерные струюуры, способные к более быстрому и полному отделению от жидкой фазы. Причиной возникновения таких структ)ф является адсорбция макромолекул флокулянта на нескольких частицах с образованием между ними полимерных мостиков. Коллоидные частицы заряжены отрицательно, что способствует процессу взаимной коагуляции с гидроксидом алюминия или железа. При добавлении активированного силиката увеличивается в 2-3 раза скорость осаждения и повышается эффект осветления. [c.75]

    Тем не менее мы считаем, что следует разделить процессы ингибирования на три ступени в зависимости от того, где эти процессы происходят. Поскольку представление о механизме ингибирования на первом этапе порой важнее как для планирования дальнейших исследований, так и для того, чтобы знать, что же мы все-таки измеряем и как интерпретировать количественные данные, полученные различными методами. Первая ступень ингибирования, видимо, обусловлена физической адсорбцией КПАВ непосредственно на отрицательно заряженной поверхности глин, а вторая ступень связана с модификацией поверхности глин при хемосорбции (образование новой поверхности — фазы органоглины) катионного ПАВ, что происходит в результате замещения обменного комплекса глин органическим катионом вблизи поверхности (в приповерхностном слое). [c.77]

    Большая часть распространенных в промышленности ингибиторов сероводородной коррозии представляет собой органические азотсодержащие соединения, в частности амины и их производные. Механизм защитного действия, предложенный И. Л. Розенфельдом и являющийся в настоящее время общепринятым, заключается в следующем. Адсорбирующиеся на поверхности металла ионы Н8 образуют диполи, отрицательно заряженные концы которых обращены в сторону коррозионной среды и способствуют адсорбции ингибиторов катионного типа. При этом изменяется строение двойного электрического слоя на границах металл-коррозионная среда и возникает дополнительный положительный скачок электродного потенциала, приводящий к замедлению катодной реакции путем торможения перехода катионов металла из кристаллической решетки в коррозионную среду. Анодная реакция замедляется в результате блокирования образующихся на поверхности каталитических комплексов (РеН8)адс адсорбированными катионами ингибитора. Кроме того, в ингибированных сероводородсодержащих средах образуется [c.327]

    Обращение знака заряда на поверхности кремнезема. Растворимые гидролизованные ионы ТЬ +, Zr +, Ве +, 20 +, Ре + и А1 + способны ирочно адсорбироваться на кремнеземе, поэтому когда они содержатся в избыточном количестве по сравнению с тем содержанием, которое требуется для образования покрытия на поверхности кремнезема, то положительный поверхностный заряд меняется на отрицательный. Гидролизованные полимерные разновидности или основные соли металлов адсорбируются на кремнеземе при значительно меньшей величине pH, чем это наблюдается для простых гидратированных ионов. Механизм изменения знака заряда, как рассматривалось в гл. 4 в связи с обсуждением вопроса о коллоидных частицах кремнезема, в равной мере хорошо применим ко всем кремнеземным поверхностям (см. лит. к гл. 4 [424—435]). Подробное рассмотрение примера, связанного с изменением знака заряда, исследованного в работе [219], приводилось выше при описании адсорбции ионов алюминия. Как отметили Джеймс, Визе и Хили [276], в дисперсных системах, в которых наблюдается коагуляция иод воздействием гидролизованных ионов металла, нет никакой очевидной корреляции между электрокинетическнм потенциалом и устойчивостью коллоидной системы. Это показывает, что теория ДЛФО, ио-видимому, не может быть применена. Авторы работы сравнивали адсорбционное поведение ионов Со +, Га +, ТЬ + на одном и том же образце ЗЮг. [c.930]

    Для Тадс И адс, соответствующих предельному заполнению, / в щелочном растворе близок к семи. В кислом растворе значение f значительно выше, а заполнение практически не зависит от концентрации глицилглицина в растворе в интервале концентраций 10 —10 М. В нейтральной среде f увеличивается с ростом адс в области потенциалов отрицательнее точки нулевого заряда /5 7, при адс>0 В (н.в.э) f достигает значений, соответствующих фактору неоднородности в кислых растворах. Эти результаты также свидетельствуют о возможном изменении механизма адсорбции при переходе от кислых растворов к щелочным. [c.44]

    На основе анализа этих особенностей кривых С — Е, представленных на рис. 87, можно предположить, что механизм адсорбции длинноценочечных катионов на поверхности раздела ртуть — раствор должен более или менее отличаться от механизма адсорбции длинноцепочечных анионов. В последнем случае адсорбция будет происходить преимущественно на положительно поляризованной поверхности, в то время как катионы будут адсорбироваться главным образом па отрицательно поляризованной поверхности. Однако простой симметрии в форме кривых С — Е в этих обоих случаях не обнаруживается, вероятно вследствие различий в характере адсорбционных сил. [c.233]


Смотреть страницы где упоминается термин Механизм отрицательной адсорбции: [c.47]    [c.154]    [c.37]    [c.37]    [c.265]    [c.166]    [c.46]    [c.53]    [c.373]    [c.387]    [c.373]    [c.373]    [c.497]    [c.179]    [c.374]   
Мембранные процессы разделения жидких смесей (1975) -- [ c.85 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция механизм

Адсорбция отрицательная

отрицательная



© 2025 chem21.info Реклама на сайте