Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Угли активные особенности

    При 0 = 0 имеет место абсолютная смачиваемость поверхности жидкостью, при 0 = =я — абсолютная несмачиваемость. Принято считать поверхность гидрофильной (смачиваемой), если данная жидкость образует на ней угол 0<п/2 при 0>я/2 поверхность считается гидрофобной. Жидкие щелочные металлы (при температурах, близких к температуре кипения при атмосферном давлении) и криогенные жидкости смачивают металлические поверхности почти абсолютно (краевой угол близок к нулю). Гидрофобными по отношению к воде и ряду других жидкостей являются парафин, фторопласт (тефлон). В табл. 1.18 приведены значения 0 для некоторых сочетаний жидкость — твердое вещество. Следует иметь в виду, что краевой угол смачивания весьма чувствителен к таким трудно контролируемым факторам, как шероховатость твердой поверхности, присутствие на ней или в жидкости посторонних примесей, особенно поверхностно-активных веществ. Увеличение шероховатости твердой новерхности увеличивает ее смачиваемость, т. е. снижает значение О [28]. Для отдельных сочетаний твердое тело — жидкость в определенном интервале температур наблюдается зависимость 6 от температуры. Так, согласно [18] для жидкого натрия на поверхности никеля (в атмосфере аргона) при /=200н-500°С краевой угол [c.86]


    Адсорбционная способность активного угля по отношению к различным примесям и в различных растворителях неодинакова. Являясь неполярным гидрофобным адсорбентом, он хорошо поглощает растворенные вещества из водных растворов и полярных жидкостей — спиртов, сложных эфиров, амидных растворителей. Для удаления примесей из малополярных и, особенно, неполярных, например углеводородных растворителей, в которых активный уголь не всегда достаточно эффективен, можно рекомендовать использование активного оксида алюминия или порошкообразного силикагеля. [c.116]

    Адсорбционно-комплексообразовательное хроматографическое разделение осуществляется в результате фильтрования раствора разделяемых веществ через колонку. Эти особенности описываемого метода делают его весьма удобным, например, для очистки больших количеств солей от примесей посторонних металлов, находящихся в небольших концентрациях. В хроматографическую колонку по- -мещают сорбент, насыщенный комплексообразующим органическим реагентом. Наиболее эффективным является применение колонок из активного угля, содержащих хорошо адсорбирующийся на угле органический комплексообразующий реагент, например диметилглиоксим, а-нитро-зо-р-нафтол, ортооксихинолин и др. Уголь или другой сорбент (например, оксид алюминия) с поглощенным ком-плексообразователем называют модифицированным сорбентом, т. е. сорбентом с измененной природой и свойствами поверхности.  [c.217]

    Если твердое тело может поглощать влагу или находится во влажном состоянии, то, как правило, оно является пористым. Большинство пористых, особенно высокопористых тел, можно представить как более или менее жесткие пространственные структуры — сетки или каркасы. Их в коллоидной химии называют гелями. Это уголь, торф, древесина, картон, бумага, ткани, зерно, кожа, глина, почвы, грунты, слабообожженные керамические материалы и т. д. Пористые тела могут быть хрупкими или обладать эластическими свойствами. Их часто классифицируют по этим свойствам. Пористые материалы обладают значительной и разной адсорбционной способностью по отношению к влаге, которая придает им определенные свойства. На практике в качестве адсорбентов. предназначенных для извлечения, разделения и очистки веществ, применяют специально синтезируемые высокопористые тела. Эти тела кроме большой удельной поверхности должны обладать механической прочностью, избирательностью и рядом других специфических свойств. Наиболее широкое применение находят активные угли, силикагели, алюмогели, цеолиты. [c.129]


    В качестве катализаторов гидрирования применяют никель, платиновую и палладиевую чернь. В последнее время используются сложные катализаторы, состояш,ие из смеси окислов хрома и некоторых других металлов (меди, цинка). Особенно активным катализатором является никель Ренея, который получается при обработке сплава никеля с алюминием (1 1) едким натром. Катализаторы применяются в мелкораздробленном состоянии, в большинстве случаев на носителе (активированный уголь, асбест) и при различных температурах. В присутствии никеля Ренея, платины и палладия гидрирование обычно проводят при комнатной температуре, а в присутствии никеля и меди — при нагревании. [c.147]

    Наличие высокой пористости делает активный уголь адсорбентом, особенно пригодным для поглощения органических веществ при очень малых концентрациях. Этой адсобрции не препятствует влажность, так как вода вытесняется с поверхности угля органическими веществами. Адсорбция — один из важных разделов учения 6 поверхностных явлениях. [c.381]

    Химические свойства углерода. Углерод является типичным неметаллом (см. разд. 11.4). При низких температурах и уголь, и графит и, в особенности, алмаз инертны. При нагревании их активность увеличивается уголь легко соединяется с кислородом и служит хорошим восстановителем. Важнейший процесс металлургии — выплавка металлов из руд — осуществляется путем восстановления оксидов металлов углем (или монооксидом углерода). [c.409]

    В методах капиллярного поднятия и отрыва кольца существенную роль играет смачивание исследуемой жидкостью поверхности частей прибора — стенок капилляра или металла кольца, т. е. краевой угол смачивания. Так как определить краевой угол при таком измерении крайне затруднительно, то эти методы применяют только в условиях полного смачивания. Для чистых жидкостей это условие почти всегда легко соблюдается, тогда как в растворах, особенно поверхностно-активных веществ, оно часто практически не достигается. По этой же причине и для измерения поверхностного натяжения на границе двух жидкостей эти методы также мало применимы. В связи с этим в ряде случаев следует предпочесть методы, в которых смачивание не играет роли. Это методы наибольшего давления пузырьков, неподвижной капли, взвешивания капли. Они пригодны для измерения поверхностного натяжения для любых границ раздела. [c.12]

    Окисленный уголь, получающийся при обработке активного угля окислителем, обладает катионообменными свойствами за счет находящихся на его поверхности карбоксильных и фенольных групп. Особенности поглощения катионов металлов —высокая избирательность и прочность связи с сорбентом —позволяют предполагать, что на поверхности сорбента образуются координационные соединения. Поэтому окисленный катионообменный уголь можно отнести к типу комплексообразующих ионообменных сорбентов. [c.155]

    Кислород- ИЛИ азотсодержащие группы в бензильном положении особенно легко и, как правило, без затрагивания ароматического ядра молекулы подвергаются гидрогенолизу на палладиевых катализаторах. На родии, нанесенном на оксид алюминия или уголь, проявляющем повышенную активность по отношению к ароматическим системам, с успехом удается восстанавливать бензольное кольцо с сохранением функциональных групп в а-положении боковой цепи  [c.35]

    В соответствии с приведенной схемой установлено, что в изученных условиях изопропенил- и изопропилиден-циклобутаны претерпевают ряд превращений гидрирование в изопропилциклобутан, гидрогенолиз с образованием 2-метилгексана и 2,3-диметилпентана, миграцию двойной связи (рис. 19, 20) и расщирение цикла до пятичленного (рис. 21). На направления реакций влияет природа газовой фазы в токе Нг преобладают гидрирование и гидрогенолиз, а в токе Не и Ыг — расщирение кольца и миграция двойной связи. Каталитической активностью в этих реакциях обладают как нанесенные металлы, так и носитель (активированный уголь), который особенно активен в реакции расщирения четырехчленного кольца в пятичленное. [c.120]

    Реагент из резиновой крошки является отходом резино-регене-ратных заводов. Размеры частиц крошки 0,2—1 мм. Соотношение резина соляровое масло равно 1 10. Чтобы обеспечить достаточное набухание, необходимо резиновую. крошку выдерживать в соляровом масле один-два дня. По данным ВолгоградНИПИнефти, резина СКС-300 имеет краевой угол смачивания а = 43° 57 и работу адгезии И т-г -= 20,2 эрг/см, а после обработки соляровым маслом соответственно а = 57° 21 и И т-г = 33,14 эрг/см . Оптимальная добавка реагента на основе резиновой крошки (РС) — 0,2—0,3% в расчете на резину. Содержание остаточного воздуха не должно при этом превышать 2%. В процессе бурения гидрофобные свойства резины приходится возобновлять дополнительными добавками солярового масла (0,2—0,5%). Расход крошки на 1 м проходки — 2,1 кг, а солярового масла — 22,3 кг. Еш,е более активна суспензия тонкодисперсного негранулированного полиэтилена (ПС). Расходы ее — 0,61 кг/м полиэтилена и 7,7 кг/м солярового масла [4]. Реагенты РС и ПС являются хорошими, но отнюдь не универсальными пеногасителями. Так, действие этих реагентов ухудшается в нефтеэмульсионных растворах, особенно при насыш,ении солью. [c.215]


    Адсорбция лекарственных веществ может иметь место при использовании в лекарственных смесях таких адсорбентов, как активированный уголь, каолин, алюминия гидроокись, растительные порошки и др., особенно в тех случаях, когда указанные адсорбенты находятся в тонкодисперсном состоянии. Адсорбция лекарственных веществ значительно снижает терапевтическую активность применяемого лекарства. [c.320]

    При восстановлении нитросоединений газами, содержащими окись углерода, возникает опасность отравляющего действия газа на катализатор, еслн даже омывающие катализатор газы тщательно освобождены от сернистых соединений. Ядовитой примесью оказываются карбонилы металлов, особенно железа (от взаимодействия СО и мелкораздробленных металлов). От них предложено освобождаться пропусканием газа через активный уголь. В последующем затем проходе газа необходимо устранять возможность соприкосновения его с железом (в газопроводах, контактном пространстве) м). [c.489]

    В большинстве процессов очистки газов в качестве катализаторов применяют металлы или соли металлов — обычно на каких-либо инертных носителях, имеющих большую удельную поверхность, хотя применяются и катализаторы без носителей. В качестве типичных катализаторов мо кно указать окись алюминия, боксит, асбест, каолин, активированный уголь, металлическую проволоку. Для получения особенно активных катализаторов поверхность их активируют при помощи специальных методов. Нередко катализатор содержит два или больше каталитически активных компонента, так как активность одного из них часто резко повышается добавкой дополнительных компонентов, называемых промоторами. [c.316]

    До 1924 г. уголь, в особенности бурый, гидрировали без пластифицирующего масла. Чтобы получить ири строго определенной температуре и времени реакции сопоставимые для различных углей и катализаторов данные, применяли так называемый опрокидывающийся конвертор . Образец угля, заключенный в контейнер из металлической сетки, помещали в холодный конец конвертора. Другой конец конвертора нагревали до температуры реакции ири пропускании потока водорода. После установления нужной температуры в нагретой части конвертора его переворачивали и уголь попадал в горячую зону. Сжижаемые продукты реакции выносились из зоны реакции потоком водорода и конденсировались в ловушке. Через определенный промежуток времени реакции конвертор вновь переворачивали и остаток непрореагировавшего угля высыпался в холодную его часть. Таким способом были выделены чистые продукты гидроге-[щзации угля, не загрязненные пластифицирующим маслом, и были определены как пригодность различных углей, так и активность различных катализаторов. Однако на основе этого способа не удалось разработать промышленного непрерывного процесса. Промышленный способ жидкофазиой гидрогенизации угля основан иа применении угольной пасты, предложенной Бергиусом. [c.257]

    При взаимодействии бурого угля с раствором гидроокиси калия образуется щелочно-угольная композиция. Поведение щелочно-угольной композиции на всех стадиях переработки отличается от разложения сырья в производстве адсорбентов сернисто-калиевой активацией. Это обусловлено физико-химическими особенностями бурого угля как сырья и различным характером разложения композиций. Влияние модификатора (гидроокиси калия) начинает проявляться с момента его введения в исходный бурый уголь, который представляет собой сложную пространственную структуру с большим числом областей ароматического характера, высокой реакционной способностью. Наличие гуминовых кислот и большого количества функциональных групп повышает реакционную способность материала, в результате чего бурый уголь активно откликается на обработку щелочными реагентами. При этом идут процессы диспергирования исходных структурных элементов маточного материала бурого угля за счет процессов, схожих с процессом омыления. Происходит значительный разогрев пасты. Имеет место глубокое химическое модифицирование исходного сырья, приводящее к пластической гелеобразной системе, обладающей высокой пространственной подвижностью. Равномерное распределение водного активатора по всей массе материала и большая вероятность образования соединений близких по типу к ПАВ способствуют получешпо пластичной композиции с достаточной исходной прочностью, обусловленной действием сил адгезии. Увеличение количества модификатора улучшает пластические свойства системы, так как вместе с гуматами в процессе струк-турообразования принимает участие и непрореагировавшая с гуминовыми кислотами щелочь. [c.542]

    Начав изучение каталитической дегидрогенизации циклогексановых углеводородов в присутствии палладиевой или платиновой черни, Н. Д. Зелинский постепенно усовершенствовал приготовление дегидрирующих катализаторов, применяя в качестве носителей их асбест, активированный древесный уголь, силикагель. Особенно стойкими и активными оказались катализаторы на активированном древесном угле они с успехом применялись в многочисленных препаративных и кинетических работах. Никель, в руках Сабатье не давший удовлетворительных результатов, оказался прекрасным катализатором дегидрогенизации циклогексановых углеводородов при нанесении его на гидрат окиси алюминия. Такой катализатор также был изучен с кинетической стороны А. А. Баландиным, А. М. Рубинштейном, Н. И. Шуйкиным и Ю. К. Юрьевым на примерах дегидрогенизации циклогексана, метилциклогексаиа и диметилциклогексана. [c.238]

    Гетерогенный катализ применяется главным образом при газофазном хлорировании. В качестве катализаторов используют активированный уголь, пемзу, отбеливающие земли и т. п., пропитанные металлическими солями, особенно медными. В соответствии с теорией Тэйлора их действие основано на способности их активных центров вызывать ионизацию хлора. Гетерогенное каталитическое хлорирование протекает по криптоионному механизму и нечувствительно к обрыву цепи, особенно если оп вызывается кислородом. Благодаря этой нечувствительности к кислороду становится возможной разработка такого процесса хлорирования, при котором хлор будет использоваться целиком именно потому, что процесс будет проходить в присутствии кислорода. При этом применяются такие контактные массы, которые делают возможным превращение образовавшегося хлористого водорода под воздействием кислорода в воду и хлор [,5]. [c.113]

    Особенно чувствительным становится ускоряющее действие поверхности на разложение перекиси водорода тогда, когда стенки сосудов, в которых она хранится, являются шероховатыми. Например, 38%-ная Н2О2 может быть нагрета в полированной платиновой чашке до 60 °С, тогда как в исцарапанной разложение уже наступает при обычной температуре. Ускоряющее влияние твердой ловерхности на разложение перекиси возрастает при прибавлении солей тяжелых металлов, например сульфатов марганца или меди. Особенно активными являются азотнокислое серебро, сернокислая медь и уксуснокислый свинец. Уголь также действует разлагающе на перекись водорода. Прп этом каталитическая актив-юность его зависит от пористости п величины его поверхности. [c.122]

    Белый фосфор имеет молекулярную кристаллическую решетку, состоящую из тетраэдрических молекул Р4 (рнс. 3.52). Такая структура обусловливает легкоплавность, высокую летучесть и большую растворимость белого фосфора в неполярных растворителях (особенно S2). Высокая химическая активность объясняется значительной напряженностью связей (угол Р—Р—Р очень мал). [c.413]

    Продолжается активное развитие ряда фугих направлений коллоидно-химической науки и смежных областей знания учения об аэрозолях (играющего важную роль в создании методов защиты окружающей среды от загрязнения) физикохимии электроповерхностных явлений, включая коллоидно-химические аспекты борьбы с коррозией термодинамики поверхностных явлений и фазовых равновесий в дисперсных системах, теории электрокинетргаеских и оптических свойсгв коллоидных дисперсий изучения коллоидных свойств дисперсий ВМС (включая методы получения полимерных покрытий, особенности латексной полимеризации) исследований специфических коллоидно-поверхностных эффектов в кристаллах особенностей смачивания и других поверхностных явлений в высокотемпературных системах. Энергично развивается физико-химическая механика природных дисперсных систем (глинистые минералы, уголь, торф и др.) конструкционных и строительных материалов (стали, сплавы, керамика, материалы на основе минеральных вяжущих веществ) контакта твердых поверхностей, трения, смазывающего действия. [c.14]

    Белый фосфор имеет молекулярную кристаллическую решетку, состоящ> ю из тетраэдрических молекул Р4, Такая структура обусловливает низкую температуру плавления, высокую летучесть, льшую растворимость белого фосфора в не1юлярных растворителях (особенно С52) и высокую химическую активность, что объясняется значительной напряженностью связей (угол Р-Р-Р очень мал). [c.412]

    В смешанных катализаторах, в которых компоненты находятся в соизмеримых количествах, могут образоваться новые, более активные соединения. При этом свойства смешанного катализатора не являются простой суммой свойств его компонентов. К числу модификаторов можно отнести и носители (трегеры), особенно часто применяемые для получения дорогостоящих металлических катализаторов (Р1, Р(1, N1, Со). Роль носителей состоит в повышении активной поверхностп, увеличении термостойкости и механической прочности катализатора и т. п. В качестве носителей используют алюмосиликаты, оксиды алюминия, хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. Так, например, дегидрирование метилциклопен-тана платиной, нанесенной на активированный уголь, ведет к образованию метилциклопентана и пентадиена, а при дегидрировании на Р1-А120з образуются бензол и циклогексан. Носители могут изменять активность и избирательность катализатора и т. п. Следовательно, роль носителя как модификатора свойств катализатора может быть очень большой, и его выбор является существенным при создании оптимального катализатора для данного процесса. [c.442]

    Молекулу фосфина можно трактовать как аналог молекулы аммгг-ака. Однако угол между связями Н—Р—Н значительно меньше, чем у аммиака (93,7° против 107°). Это означает уменьшение доли участия 5-облаков в образовании гибридных связей в случае фосфина. Кроме того, связи фосфора с водородом менее прочны, чем связи последнего с азотом, а электрический момент диполя аммиака почти втрое превосходит момент диполя фосфина. Донорные свойства у РНз выражены несравненно слабее, чем у аммиака. И малая полярность молекулы РНз, и слабая активность акцептировать протон приводят к отсутствию водородных связей не только в жидком и твердом состояниях, но и с молекулами воды в растворах, а также к малой стойкости иона фосфония РН . Последний является аналогом аммоний-иона и характеризуется тетраэдрическим расположением связей. Самая устойчивая в твердом состоянии соль фосфония — это его иодид РН41. Водой, и особенно щелочными растворами, соли фосфония энергично разлагаются  [c.278]

    Химические свойства углерода. В обычных уело ВИЯХ углерод (особенно алмаз) весьма инертен и всту пает в реакции только с очень энергичными окислителя ми. При нагревании химическая активность углерод повышается. В аморфном виде уголь и кокс легко горя на воздухе, образуя оксид углерода (IV) СОг. При недо статке кислорода углерод окисляется только до оксидс углерода( ) СО. Алмаз способен гореть лишь в чистоь [c.350]

    Для очистки стоков от органических веществ, молекулы которых гидрофобны или слабогидратированы, применяют активный уголь. При этом получают стоки с БПК менее 1 мг О2/Л, ХПК —3— 16 мл Ог/л, с содержанием взвешенных веществ менее 0,5 мг/л и фосфатов 0,1—1,0 мг/л. Однако активный уголь дорог, поэтому его целесообразно применять только для окончательной очистки небольшого количества сточных вод и в случае, если необходима особенно высокая степень очистки. [c.402]

    Сравним две ситуации по активной мощности, выделяющейся в электродной цепи. Для этой цели рассмотрим рис. 34, а и б, которые изображают фиксированные положения динамического процесса изменения составляющих /с и /ф под действием напряжения 11. Пусть процесс изменения составляющих /с и /ф происходит так 1) вектор тока /с в начале процесса больще вектора тока /ф и они составляют между собой угсм ф. В этот же момент вектор суммарного тока представляется вектором / и составляет угол с осью напряжения аь 2) в конце процесса (рис. 34,6) вектор тока /с2 стал меньше вектора /ф2 и оба составляют угол ф. Для этого момента суммарный вектор тока определяется /2 и составляет угол с осью напряжения аг 3) в середине процесса ситуация представлена на рис. 34, в. Отметим характерные особенности состояния провдсса по рис. 34, а и б. Как видим, вектор тока /ф меньше вектора тока /с , но вектор тока /ф равен вектору тока /ёг и вектор тока равен вектору тока 7 2- Для такого процесса изменения составляющих /ф и /с оказалось, что угол а2 меньше угла а , суммарный вектор / начала процесса стал равным суммарному вектору /2 конца процесса, а вектор измеряемого тока / начала процесса меньше вектора / 2 конца процесса. [c.65]

    При подготовке у глей к коксованию, в особенности с применением -нагрева, а затем в камерах коксовых печей, уголь подвергается механическому разрушению, испытывает термомеханические и термохимические воздействия. Эти процессы протекают в условиях различной газовой среды. Но, поскольку уюль является полимером с лабильной гидроароматической структурой макромолекул, в которой активную роль играют водородные связи [17], газовая среда должна оказывать влияние на свойства поверхности зерен углей [38-45], что, в свою очередь, не может не сказаться на их спекаемости. Следовательно, влияние газовой среды представляется интересным прежде всего для практики, гак как в разработках многих процессов подготовки углей активная роль отводится газовому агенту-носителю как в холодном так и в нагретом o тoяни г Вместе с тем, этот вопрос имеет теоретическое значение, поскольку позволяет изучить физическое и химическое взаимодействие активных составляющих I повой среды с доступной поверхностью угля и влияние на его спекаемость. [c.30]

    Другая конструкция адсорбера с движущимся слоем, запатентованная фирмой Америкэн Стандарт Ойл Инкорпорейшн [13], показана на рис. У1-6. Особенность этого аппарата за-л<лючается в том, что дренажное устройство для сбора и отвода очищенной воды 1 находится не в верхней части колонны, а в ес средней части, разделяя слой адсорбента па две зоны нижнюю и верхнюю. Активный уголь, находящийся в верхней зоне, давит на нижележащие слои адсорбента, препятствуя их псевдоожижению. Поэтому скорость восходящего потока жидкости может намного превышать скорость стесненного осаждения используемых в аппарате гранул активного угля. Адсорбер рабо- [c.148]

    Полнота десорбции слабых электролитов растворами щелочи (или кислоты в случае насыщения угля органическими основаниями) в большой мере зависит от времени контакта регенерационного раствора с активным углем. Эта особенность де-сорбционной регенерации отражена, например, в патенте [4], в котором указано, что активный уголь выдерживают с раствором реагента (NaOH или НС1) в течение 6—24 ч, перемешивая уголь с раствором сжатым воздухом каждые 30 мин в течение нескольких секунд. В соответствии с этим патентом процесс осуществляют в две ступени и при затрате раствора около 10% от объема очищенной воды достигают степени регенерации угля 97—98% при потерях угля от истирания менее 1%. [c.190]

    Еще в 1839 г. Грове получил ток от кислородно-водородного элемента. Однако он не представлял себе возможности практиче,-. ского использования подобного источника тока. Попытку создания топливного элемента, пригодного для практики, впервые осущест-5 вил Павел Николаевич Яблочков. Им были разработаны в 1895 г." элементы с газовыми электродами. Теоретические вопросы, связан- ные с созданием топливных элементов, изучали многие крупные зарубежные ученые — Оствальд, Нернст, Грубе и другие и СССР — Фрумкин и ряд ученых его школы. Особенно большое внимание разработке топливных элементов стали уделять после второй мировой войны. Над этой проблемой работает ряд коллек-] тивов исследователей. Однако применение топливных элементов, пока еще очень ограничено. В настоящее время называют топливными элементами все элементы, в которых активные материалы не заключены в самом элементе, а подаются в него непрерывно. Системы из топливных элементов и относящихся к ним вспомогательных устройств, например для регулировки давления газов, называют электрохимическими генераторами энергии. В качестве окислителя на положительном электроде в топливных элементах чаще всего используют кислород. Существуют элементы с жидкими окислителями — азотной кислотой и др., но они не получили пока распространения. Работа кислородного электрода была рассмотрена ранее. На отрицательном электроде в качестве активных веществ (топлива) используют газообразные (водород), жидкие (метанол, гидразин и др.) и твердые вещества. Некоторые виды топлива (метан, уголь) электрохимически инертны, их ионизация протекает так медленно, что практически процесс не осуществим без принятия специальных мер. Для ускорения реакции используют два способа электроды изготавливают из веществ, каталитически ускоряющих процесс, и работа ит при повышенных температурах. [c.352]


Смотреть страницы где упоминается термин Угли активные особенности: [c.170]    [c.35]    [c.198]    [c.312]    [c.16]    [c.246]    [c.133]    [c.523]    [c.32]    [c.167]    [c.523]   
Основы адсорбционной техники (1976) -- [ c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Активные угли

КСМ, активном угле GKT

Особенности адсорбции оксиэтилированных эфиров спиртов и фенолов с длинными полиоксиэтиленовыми цепями в порах активных углей

Уголь Угли активный



© 2025 chem21.info Реклама на сайте