Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образование органических веществ

    Фракционирование изотопов углерода происходит в процессе его геохимического круговорота (рис. 43). За начало этого круговорота можно принять выделение СОа из мантийных глубин во время вулканических процессов, а также при термическом разложении известняков и доломитов в условиях метаморфизма. Затем СОа распределяется между атмосферой и гидросферой. В морской воде СОа связывается с Са и Mg, образуя известняки преимущественно биогенного происхождения. Другая часть СОа атмосферы и гидросферы поглощается зелеными растениями в процессе фотосинтеза. Фотосинтез приводит к образованию органического вещества. Часть биомассы после гибели растений окисляется с образованием СОа, другая часть захороняется в условиях восстановительной среды> На всех этапах геохимического цикла происходит разделение изотопов углерода. [c.390]


    ХЕМОСИНТЕЗ — биохимический процесс образования органических веществ из неорганических. Во время X. восстановление происходит за счет химической энергии, которая освобождается при окислении аммиака, сероводорода и других веществ, участвующих в процессах. X. осуществляется некоторыми видами бактерий. [c.273]

    Фототрофные — образование органического вещества идет с использованием энергии солнечной радиации. К этой группе относятся микроорганизмы  [c.22]

    Вычислить теплоты образования органических веществ по методу поправок и по энергиям связей при 25°С. По полученным значениям теплот образования для газов вычислить теплоты образования для указанного агрегатного состояния и рассчитать расхождение между вычисленными и табличными данными. [c.36]

    Круговорот углерода в природе включает постоянный переход его органических соединений в неорганические и наоборот. Образование органических веществ из оксида углерода (IV) и воды — фотосинтез — осуществляется в зеленых растениях под воздействием солнечного света. В результате фотосинтеза в атмосферу выделяется кислород  [c.718]

    Сульфокислоты разделялись на основании различной их растворимости различные фракции затем десульфировались путем гидролиза водой с образованием органических веществ, которые в свою очередь по различной растворимости разделялись на углеводороды и окисленные соединения (нейтральные смолы и асфальтены). Полученные таким образом углеводороды изучались затем по методу Уотермана с целью общего определения структуры. Результаты рассматриваются более полно ниже, в разделе Сульфированные нефтяные фракции . [c.523]

    В теории образования органического вещества углей основными являются вопросы об исходном материале — источнике органического вещества углей — и о характере его превращения в процессе углеобразования. Первый вопрос решается однозначно исходным материалом органического вещества твердых топлив являются растения высших и низших форм. Вопрос о характере превращения материнского вещества в процессе углеобразования еще не решен, но исследованиями последних лет установлено, что в этом процессе значительную роль играли биохимические явления и явления специфичные для коллоидных систем. Механизм образования твердых топлив большинством исследователей представляется как процесс распада материнского вещества за счет отщепления СН4, СО2 и Н2О. Многочисленные попытки представить процесс углеобразования в виде стехиометрических уравнений недостаточно обоснованы, за исключением работы Григорьева [24]. [c.39]


    Расчет теплоты образования органических веществ методом поправок. При расчете АЯ/, 298 методом поправок выбирается простейшее (основное) вещество в данном гомологическом ряду. Теплота образования этих простейших веществ приведена в справочных таблицах. В этом веществе производится замена атомов водорода на группы СНз, необходимые для построения углеродного скелета химического соединения. Затем группы СНз замещают на другие группы и в случае необходимости заменяют одинарные связи двойными или тройными связями. При всех этих замещениях указываются тепловые поправки, которые берутся из соответствующих таблиц.  [c.32]

    Фосфор. Содержится в нефти до 10 %. Изучение форм его существования имеет исключительно важное значение для геохимиков, а также для изучения диагенеза биохимических компонентов, приводящих к образованию органического вещества горючих ископаемых. В связи с этим интересна диаграмма образования угля, нефти и керогена сланца, показывающая основные этапы формирования органического вещества полезных ископаемых и дающая представление об источниках фосфора, серы, [c.309]

    Вода вызывает набухание коллоидов, она связывается с белком и другими органическими соединениями, а также с ионами, входящими в состав клеток и тканей. Вместе с углекислым газом вода в процессе фотосинтеза вовлекается в образование органических веществ и, таким образом, служит материалом для создания живой материи на Земле. [c.46]

    Вычислить теплоты образования органических веществ по методу поправок и по энергиям связей при [c.39]

    Зная разность энтальпий сгорания, легко определить разность энтальпий образования органического вещества. Схема расчета приведена для общего случая горения органического вещества  [c.145]

    Хлорофилл принадлежит к группе жирорастворимых пигментов, он растворяется в жирах и органических растворителях. Хлорофилл, как показали работы К. А. Тимирязева и его последователей, играет огромную роль в процессе ассимиляции углекислого газа. Процесс фотосинтеза представляет собой окислительно-восстановительное взаимодействие углекислого газа и воды, идущее в присутствии хлорофилла, который поглощает энергию солнечных лучей. Фотосинтез в настоящее время является главным источником образования органических веществ на Земле. [c.61]

    Использование энергии, запасенной в световой стадии фотосинтеза, идет иа фотосинтетическое образование органического вещества СО2. [c.200]

    Автотрофные и гетеротрофные процессы обьгано разделены в пространстве. Первые активно протекают в верхних слоях, где доступен солнечный свет, а вторые - интенсивнее в нижних слоях (почвах, донных отложениях). Кроме того, эти процессы разделены и во времени, поскольку существует временной разрыв между образованием органических веществ растениями и разложением их консументами. Паиример, лишь небольшая часть зелёной массы леса немедленно используется животными и насекомыми. Большая часть образованного материала (листья, древесина, семена, корневища и др.) не потребляется сразу, а переходит в почву или в донные осадки. Может пройти определённый промежуток времени прежде чем накопленное органическое вещество будет использовано. [c.10]

    В таблице приведены значения энергий разрыва связей, измеренные различными методами, а также вычисленные на основании принятых в данном издании значений энтальпий образования органических радикалов (табл. 5), энтальпий образования атомов (табл. 4), энергий диссоциации двухатомных молекул (табл. 1) и энтальпий образования органических веществ. Значения энтальпий образования органических веществ были приняты по справочным изданиям и оригинальным работам. [c.63]

    Витализм, т. е. учение о жизненной силе, оказался живучим. Виталистические взгляды в тех или иных формах высказывали. виднейшие химики XIX в. Они были отражены и в философских системах XIX в., в частности, в шеллингианской натурфилософии, оказавшей определенное, влияние на естествоиспытателей. Но -многие ученые скоро поняли предвзятость идеи жизненной силы как единственного фактора образования органических веществ. Я. Берцелиус признал, что наши знания о законах соединения элементов в неорганической природе должны быть целиком применимы и к соединениям этих элементов в органической природе Ю. Либих в середине столетия писал ...при отде- [c.97]

    Возможность образования органических веществ на первобытной Земле [c.190]

    В процессе дыхания в растении органические вещества окисляются до СОа и воды, а поэтому масса исследуемого продукта уменьшается. 0 служит одним из существенных показателей интенсивности жизненных процессов в растительном организме. При исследовании настоящего явления исключают влияние света на растение, с которым связано образование органических веществ при фотосинтезе. [c.213]


    Используя табличные значения стандартной энергии Гиббса образования органических веществ при различных температурах (например, в Приложении I), можно оценить термодинамическую вероятность, например, термических реакций превращения углеводородов разных классов. [c.85]

    Еще в 30-е годы XX века при сравнительном исследовании процессов фотосинтеза у некоторых фотосинтезирующих бактерий было замечено, что при культивировании на свету и в присутствии Н28 происходило образование органических веществ, но выделения кислорода не наблюдалось. Несколько позднее было обнаружено, что реакции фотосинтеза у зеленых растений и зеленых серных бактерий очень сходны  [c.182]

    Хемотрофные — образование органического вещества идет с использованием энергии химической реакции (без использования света)  [c.22]

    В смысле оценки прогресса в идеологических взглядах Берцелиуса приведенные слова, как и все остальное, что относится к каталитической силе в цитируемом разделе Действующие начала образования органических веществ , имеют очень важное, если не решающее значение. Загадку жизни, не познаваемую тайну ее, по Берцелиусу, составляют уже не процессы взаимного превращения органических веществ в живой природе, а целенаправленность работы лабораторий организмов — синтез на основе простого питательного вещества тех видов растения и животного, от которого происходит семя или яйцо , т. е. синтез живого тела, способного к самовоспроизводству. Но в прогрессе человеческих естественнонаучных знаний эта загадка коренным образом отличается от.той, которая ставила вопрос о возможности познания взаимных химических превращений веществ в живой природе и о перенесении этих превращений в химическую лабораторию. Более того, Берцелиус и в непознаваемости этой тайны, относящейся уже к биологии, оставляет окно для наблюдений, или, луч ще оказать его словами, тон кую стену для подслушивания, и выражает большие надежды на роль каталитической силы в дальнейшем познании этой тайны. [c.44]

    Вода озер отличается самым различным содержанием солей — от 30 (Онежское) до 5820 мг/л (Иссык-Куль) и выше. Количество органических веществ в них изменяется от 2,0 до 50 мг/л. Меньшая концентрация характерна для озер, в которых образование органических веществ происходит за счет планктона. В озерах, питающихся болотными водами, содержа ние их достигает нескольких десятков миллиграммов в литре. Болотные воды обычно содержат мало солей, но много органических веществ (в некоторых болотах концентрация последних достигает 850 мг/л). [c.20]

    Нахождение Крахмала в природе и его образование. Крахмал —одно из самых распространенных веществ в растительном мире. Он содержится в семенах, зернах, тканях и корнях различных растений. Особенно много его в клубнях картофеля (около 20%) и в зернах злаков (до 70—80%). Это— запасное питательное вещество растений. Крахмал — продукт усвоения двуокиси углерода и воды Превращение СОз и НаО в сложные органические вещества — эндотермический процесс, сопровождающийся поглощением солнечной энергии. Так как он протекает под действием света, то получил название фотосинтеза. Весь процесс фотосинтеза тесно связан с зеленым веществом растений — хлорофиллом. Солнечная энергия превращается при этом в химическую энергию органических веществ. За последние годы выяснено, что до 25% поглощаемой растениями двуокиси углерода осуществляется не из воздуха, а корневой системой растений (при поглощении карбонатов из почвы). При этом процесс образования органических веществ начинается не в листьях, а в зеленых образованиях, находящихся внутри растения. Выяснить это удалось методом радиоактивных изотопов. [c.246]

    ФОТОСИНТЕЗ — синтез растениями органических веществ (углеводов, белков, жиров) из диоксида углерода, воды, азота, ( юсфора, минеральных солей и других компонентов с помощью солнечной энергии, поглощаемой пигментом хлорофиллом. Ф.— основной процесс образования органических веществ на Земле, определяющий круговорот углерода, кислорода и других элементов, а также основной механизм трансформации солнечной энергии на нашей планете. В процессе Ф, растения усваивают вгод4 101 туглерода, разлагают 1,2 х X 10 т воды, выделяют 1 10 т кислорода и запасают 4-102° кал солнечной энергии в виде химической энергии продуктов Ф. Это количество энергии намного превышает годовую потребность человечества в ней. Ф.—сложный окис-лительно-восстановительный процесс, сочетающий фотохимические реакции с ферментативными. Вследствие Ф. происходит окисление воды с выделением молекулярного кислорода и восстановление диоксида углерода, что выражается [c.268]

    Органические вещества. Имеются два основных источника поступления органических веществ в водоемы. Во-первых, поступление извне, главным образом с площади водосбора с ливневыми и талыми водами. В районах, где развита ветровая эрозия, могут иметь значение и органические вещества, приносимые ветром. Во-вторых, образование органического вещества в самом водоеме в результате развития растений, способных синтезировать органическое вещество из минеральных соединений. [c.29]

    Для соединений, содержащих серу, пришлось принять различное исходное состояние серы. Значения АЯ , 293 и АО , 298, приведенные в таблицах неорганических веществ, относятся к кристаллическому состоянию серы (в ромбической форме), а параметры реакций образования органических веществ, приведенные в табл. 18—20, относятся к исходному состоянию серы в форме 82 (г). Информация относительно значений АЯ298, принятых при этих пересчетах, помещена в примечаниях к табл. 18—20. [c.315]

    Опыт показывает, что иногда фотохимические процессы осуществляются под действием излучения, хотя оно совершенно не поглощается реагирующими веществами. Казалось бы, в данном случае имеет место отступление от закона Гроттуса. Однако исследования показали, что эти реакции происходят только тогда, когда п реагирующим веществам примешиваются некоторые посторонние примеси, которые, поглощая световую энергию, передают ее затем реагирующим веществам. Эти примесные вещества получили лазванпе сенсибилизаторов. Механизм действия сенсибилизаторов состоит в том, что молекула сенсибилизатора при поглощении фотона переходит в возбужденное состояние, а затем, столкнувшись с молекулой реагирующего вещества, передает ей избыток своей энергии, вызывая тем самым химическое превращение. Примеров сенсибилизированных реакций можно привести очень много. Так, путем добавления к фотоэмульсии некоторых веществ, выполняющих роль сенсибилизатора, можно значительно повысить ее чувствительность к красным лучам света. Известный всем хлорофилл также является сенсибилизатором фотохимических реакций образования органических веществ в зеленых растениях. [c.175]

    Пример 3. Расчёт теплоты образования органического соедпиенпя. Как правило, калориметрическое определение теплоты образования органического вещества невозможно. Но если известна теплота сгорания каждого элемента, входящего в состав соединения, и теплота сгорания самого вещества, можно воспользоваться законом Гесса и получить уравнение [c.85]

    На состав морской поды важное влияние оказывают существующие в ней растения и ивотные. Простейшим звеном в цепи питания является фитопланктон-мельчайшие растения, в которых СО2, вода и другие питательные вещества в результате фотосинтеза превращаются в растительное органическое вещество. Анализ состава фитопланктона показывает, что углерод, азот и фосфор присутствуют в нем в атомном отношении 108 16 1 (см. рис. 17.2). Таким образом, в расчете на один атом фосфора (обычно присутствующий в виде гидрофосфат-иона НРО ") и 16 атомов азота (обычно в виде нитрат-иона) требуется 108 молекул Oj. Благодаря своей большой растворимости в морской воде СО2 всегда находится в ней в избытке. Поэтому концентрация азота или фосфора оказывает лимитирующее влияние на скорость образования органического вещества в процессе фотосинтеза. [c.147]

    Расчет теплоты образования органических веществ методом поправок. При расчете ДН 293методом поправок выбирается простейшее (основное) вещество в данном гомологическом ряду. Теплота образования этих простейших веществ приведена в справочных таблицах. В этом веществе производится замена атомов водорода на группы СНз, необходимые для построения углеродного скелета химического соединения. Затем группы СНз замещают на другие группы и в случае необходимости заменяют одинарные связи двойными или тройными связями. При всех этих замещениях указываются тепловые поправки, которые берутся из соответствующих таблиц . Тепловые поправки суммируются с теплотой образования основного вещества. Полученная сумма и есть искомая теплота образования вещества в газообразном состоянии. [c.36]

    Теплоты сгорания, найденные калориметрически, пересчитывают на стандартные условия, относят к температуре 298,15 К и обозначают 298 (подстрочный индскс С—первая буква слова ombustum — сгорание). Они используются для определения теплот образования органических веществ и теплот реакций (примеры 2, 3 в 4 этой главы). [c.82]

    При образовании молекулярного кристалла, в котором взаимодействия сводятся к вандерваальсовым, перераспределения электронов между молекулами не происходит. Так как вандерваальсовы взаимодействия много слабее кулоновских и ковалентных, молекулярные кристаллы имеют заметно более низкие энергии связи и температуры плавления. Для них характерна плотнейшая упаковка частиц. Наиболее распространены молекулярные кристаллы, образованные органическими веществами (например, углеводородами). Примером неорганических молекулярных кристаллов является затвердевшие благородные газы, [c.176]

    НоБый метод синтеза органических соединений из окиси углерода и водяного пара по условиям процесса и характеру получаемых продуктов сходен с методом синтеза органических веществ из окиси углерода и водорода по способу Фишера— Тропша, но имеет ряд преимуществ. Для осуществления нового синтеза не требуется применения дорогостояш,его водорода, и образование органических веществ протекает при прямом взаимодействии окиси углерода и водяных паров на катализаторе по схеме [c.181]

    Допустимое количество примесей зависит от природы этих примесей и требований к точности получаемых данных. Поэтому установить общие критерии чистоты применяемых веществ не представляется возможным. При оценке допустимой концентрации примесей необходимо руководствоваться тем, что чем больше различаются по химическо природе основное вещество и примесь, тем меньше допустимая концентрация последней. Например, при исследовании равновесия в системах, образованных органическими веществами, заметное влияние на получаемые результаты оказывает примесь воды в несколько сотых долей процента. В противоположность этому даже значительная (до нескольких процентов) примесь веществ близких по химической природе, например изомеров или ближайших гомологов, существенно не влияет на точность получаемых данных. [c.8]

    Таким образом, при применении уравнения Дюгема—Маргулеса к изобарным данным о равновесии игнорируется изменение коэффициентов активности с температурой. Из уравнений (90) видно, что изменение коэффициентов активности тем больше, чем больше теплота смешения и изменение температуры и чем ниже температура кипения компонентов. Если теплота смешения компонентов относительно невелика, то изменение коэффициентов активности с температурой получается небольшим. Так, при АЯ,,и=500 кап./кг моль ( 21000 дж/кг моль), Г=350° К и разности температур 30° величина коэффициента активности изменяется, примерно, на 6% [ 1, что находится на уровне обычных погрешностей экспериментального исследования равновесия. Это оправдывает имеющиеся ре1 0мендации [ 1 о возможности применения уравнения Дюгема—Маргулеса к данным о равновесии при постоянном давлении. При этом, разумеется, нельзя упускать из вида допущепия, с которыми связано такое применение уравнения Дюгема—Маргулеса. Использовать это уравнение можно в тех случаях, когда теплоты смешения компонентов невелики. Таково большинство систем, образованных органическими веществами. Если теплоты смешения колгаонентов большие или требования к точности опытных данных очень велики и требуется точная их термодинамическая проверка, то необходимо учитывать изменение коэффициентов активности с температурой. В этом случае в уравнение Дюгема—Маргулеса нужно ввести член, учитывающий теплоту смешения комнонентов. Уравнение для проверки опытных данных при этом имеет следующий вид 1 ]  [c.78]

    Следует отличать горючие сланцы от углистых пород, которые представляют собой глины, аргиллиты, пески, песчаники и породы с рассеянным органическим веществом гумитового происхождения. Сланцы образовались на месте неглубоких водоемов, где происходило накопление отмерших водорослей и частично терригенного гумусового материала из высших растений. Главную роль в образовании органического вещества предшественника керогена играли бактерии. Биохимический процесс протекает стадийно, сначала в окислительной, а затем восстановительной среде. [c.33]

    Естественно, что представление о жизненной силе как единст- -венной причине образования органических веществ создавало Непроходимую пропасть между неорганическими и органически- Ли веществами. Было бы логичным допустить, что после выделе-/ИИЯ из организма определенного вещества влияние жизненной силы на его дальнейшее существование прекращается. Но такое допущение казалось химикам невозможным.. Я. Берцелиус писал  [c.97]

    Для определения теплот образования органических веществ чаще всего измеряются теплоты сгорания. Реже калориметрическим методом определяются теплоты гидрирования, галоидировапия и гидрогалоидированпя органических веществ. Точность измерения теплот сгорания органических веществ, содержащих углерод, водород, кислород и азот, достигнутая в современных работах, очень высока так, например, результаты, полученные в ряде работ, воспроизводятся в пределах 0,02—0,05%. Вычисление теплот образования органических веществ на основании измеренных теплот сгорания не представляет больших затруднений, так как состав продуктов их сгорания обычно сравнительно прост и может быть надежно установлен анализом, а теплоты образования основных продуктов сгорания (СОг, Н2О) установлены весьма точно. [c.155]

    В 1847 г. в четвертом томе пятого издания его учебника [23], посвященном органической химии, в разделе Действующие начала образования органических веществ можно прочесть следующее С самого начала каждая индивидуальная жизнь снабжается веществами, за счет расхода которых происходит первоначальное развитие организма у растений эти вещества находятся в семенах, у многих животных в яйцах и теле матери, рождающей новую жизнь. Но внутри находящаяся сила, определяющая на основании особых относящихся сюда влияний, что воспринятое извне питательное веще-с т 1в о д о л ж 1н о, с д е л а т ь с я о с о б ы, м видом р а с т е и и я или животного, от которого вновь происходит семя или яйцо, есть з а ir а д к а жизни, которую мы никогда не разрешим. Как бы серьезно мы ни старались бросить взгляд в эти лаборатории организмов, мы никогда не поймем этого spiritus re tor , который предопределяет их действия согласно их целям. Но между тем все-таки мы можем подслушивать то здесь, то там нечто из тайн, и никто не может предвидеть, как далеко [c.43]

    Следует отметить, что такой важный вопрос, как определение энтальпий образования органических кристаллов, опущен полностью. И в этом случае мы не можем оправдать себя утверждением, что вопрос где-либо недавно тщательно рассматривался. По-видимому, наиболее значительной попыткой в этом направлении является уже устаревшая книга Паркса и Хаффмана Свободные энергии органических соединений [514], которая вместе с обзором Хараша [348] представляет единственное пространное издание, посвященное энтальпиям и другим термодинамическим характеристикам образования органических веществ. Что касается экспериментального определения энтальпий образования, то последние достижения в этой области рассмотрены в книгах Экспериментальная термохимия под редакцией Ф. Д. Россини [581] и под редакцией Г. А. Скиннера [132]. Большего внимания заслуживает также термодинамика многокомпонентных систем. [c.10]

    Теплоты образования органических веществ обычно получают, определяя экспериментально теплоты их сгорания. Свартс2 2 первым исследовал термохимические свойства фторорганических соединений и нашел теплоты сгорания ряда органических веществ, в молекулах которых содержится до трех атомов фтора. В продуктах сгорания таких веществ фтор находился в виде фтористого водорода последний поглощался избытком воды, вводимой перед началом опыта в калориметрическую бомбу. [c.339]


Смотреть страницы где упоминается термин Образование органических веществ: [c.450]    [c.106]    [c.32]    [c.51]    [c.14]    [c.92]   
Перекись водорода (1958) -- [ c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Возможность образования органических веществ на первобытной Земле

Восстановление органических веществ с образованием радикалов

Вычисление стандартных энтальпий образования органических веществ состава С, Н и О из данных по энтальпиям их сгорания

Зависимость теплот образования — ДЯ неорганических и органических веществ от температуры

Значение продуктов распада белков, углеводов, жиров, пигментов в образовании органического вещества сланцев и нефти

Изменение энтальпии при образовании водных растворов неорганических веществ и солей органических кислот

Изменение энтальпии при образовании водных растворов органических веществ

Логарифмы констант равновесия реакций образования органических и некоторых неорганических соединений из простых веществ

Молярные теплоты сгорания и теплоты образования органических веществ

Образование ацетилена при неполном сгорании органических веществ

Образование и реакционная способность радикалов в органических твердых веществах

Образование осадков в водных растворах органических веществ под действием излучения

Образование элементорганических соединений из органических веществ при электрохимических процессах

Окисление органических веществ с образованием радикалов

Органическое вещество торфов и пути его образования

Расчет констант равновесия реакций между органическими газообразными веществами по AG0 образования связей

Соотношения между параметрами реакций образования, реакций сгорания и процессов атомизации органических веществ

Стандартные изменения энергии Гиббса образования некоторых неорганических и органических веществ и их стандартные энтропии

Стерины образование ассоциатов с органическими веществами

Эмпирические методы определения стандартных теплот сгорания и образования из простых веществ органических соединений

Энтальпии реакций и энтальпии образования органических веществ Энтальпии сгорания и стандартные энтальпии образования твердых и жидких органических веществ, не содержащих других элементов, кроме углерода, водорода и кислорода

Энтальпии сгорания и стандартные энтальпии образования твердых и жидких органических веществ, содержащих кроме С, Н и О другие элементы



© 2025 chem21.info Реклама на сайте