Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистидин биохимическое

    Расположение, или последовательность, аминокислот вдоль белковой цепи определяет первичную структуру белка. Первичная структура ответственна за неповторимую индивидуальность белка. Замена хотя бы одной аминокислоты может привести к изменению биохимических свойств белка. Например, серповидноклеточная анемия представляет собой генетическое (наследственное) заболевание, вызываемое единственной ошибкой в построении белковой цепи гемоглобина. Эта белковая цепь содержит 146 аминокислот. Первые семь аминокислот в нормальной цепи-валин, гистидин, лейцин, треонин, пролин, глутаминовая кислота и снова глутаминовая кислота. У человека, страдающего серповидноклеточной анемией, шестая аминокислота в этой цепи-валин, а не глутаминовая кислота. Замещение всего одной аминокислоты с кислотной функциональной группой в боковой цепи на аминокислоту с углеводородной боковой цепью настолько изменяет растворимость гемоглобина, что в конечном итоге приводит к нарушению нормального кровообращения (см. также разд. 12.8, ч. 1). [c.448]


    Наряду с уже известными биохимическими методами имеются другие методы, предназначенные для модификации боковых цепей молекул, что позволяет обнаружить корреляцию наблюдаемых изменений в спектрах аминокислот с изменениями, наблюдаемыми в последовательности. Эти методы в основном используют тот факт что, в нативном состоянии протеина реакционная способность аминокислот в зависимости от их положения в молекуле может различаться достаточно сильно. Это становится понятным, если представить, что аминокислота находится во внутренней части протеина, которая труднодоступна для взаимодействия с химическими веществами. В этом случае месторасположение модификации в последовательности может быть установлено с помощью химических методов. Распространены в основном методы H-D-обмена i-протонов гистидина или нитрование тирозина. Правда, все эти методы обладают тем недостатком, что здесь имеется опасность неверной интерпретации изменений, наблюдаемых в спектрах, в случае, если эти изменения возникают не в результате введения специфических меток, а, напротив, связаны с неспецифическими процессами денатурации. [c.134]

    Как известно, для синтеза белков и других биохимических реакций организм использует исключительно аминокислоты, а не белки, поступающие с пищей. Некоторые аминокислоты, необходимые для роста и нормального функционирования животных организмов, потребляются готовыми из пиш.н, так как скорость их синтеза отстает от скорости расхода. Такие аминокислоты называются незаменимыми аминокислотами, к ним относятся валив, лейцин, изолейцин, фенилаланин, аргинин, треонин, метионин, лизин, триптофан, гистидин. [c.261]

    Реакция биохимического декарбоксилирования (расщепление аминокислот до аминов) является общей для многих аминокислот. Так, например, гистидин превращается в гистамин (стр. 572), триптофан путем одновременного окисления — в серотонин — 5-окси-3-(2-аминоэтил)-индол (стр. 553). [c.271]

    Эти реакции характеризуются высокой селективностью и мягкостью условий, что обусловило широкое применение ЛГ-ацилпроизводных гетероароматических систем в качестве эффективных ацилирующих агентов [269]. Более того, обнаружено, что подобные превращения весьма распространены в живой природе. В частности, имидазольное кольцо гистидина в составе ряда ферментов (трипсин, химотрипсин и др.) осуществляет перенос ацетильной и фосфорильной групп на гидрокси-, амино- и тиольные группы в ходе биохимических реакций. [c.160]

    Номенклатура ферментов. Исторически возникшие (тривиальные) названия ферментов часто строятся по названию субстрата с изменением суффикса на -аза (фумараза, гистидаза, аргиназа и т. п.). Комиссия по ферментам Международного биохимического союза разработала правила рациональной номенклатуры ферментов. Согласно этим правилам в названии фермента указываются его субстраты и основной класс, к которому принадлежит фермент. Каждый фермент обозначается специальным шифром, указывающим номер класса, подкласса, подподкласса и номер фермента в подподклассе. Например, 2.6.1.2 — аланин оксоглутарат-аминотрансфераза 4.3.1.3. — гистидин-аммиак-лиаза (гистидаза) 1.1.1.28 — лактат НАД-оксидоредуктаза (лактатдегидрогеназа). Рациональные названия без дополнительных объяснений позволяют представить реакцию, которую катализирует данный фермент. Однако часто они довольно длинны, поэтому наряду с ними используются и тривиальные названия. [c.80]


    Несмотря на то что в состав белков человеческого организма и вхог дят все аминокислоты, перечисленные в табл. 14.1, однако отнюдь не все они должны обязательно содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот. Такими незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Все остальные аминокислоты, которые называют зал1еныл1ьши аминокислотами, человеческий организм способен вырабатывать сам. Минимальные количества аминокислот, необходимые человеку в молодости, были установлены американским биохимиком У. Ч. Роузом. Ерли ежесуточное поступление в организм человека любой из восьми указанных аминокислот (за исключением гистидина) окажется ниже определенного уровня, то организм человека будет выделять больше соединений азота, нежели получать их с пищей белки в его организме станут распадаться быстрее, чем синтезироваться. Потребность молодых людей в аминокислотах колеблется в пределах двукратной дозы, например 0,4—0,8 г лизина в сутки. Минимальная потребность по Роузу представляет собой наибольшую величину для любого из наблюдаемых им лиц. Нет сомнений в том, что каждый человек отличается от другого своими генетическими особенностями, а следовательно, и своими биохимическими характеристиками. Данные, приведенные в табл. 14.2, вдвое превышают значения, установленные Роузом. Предположительно эти количества вполне достаточны для предотвращения нарушений белкового обмена для большинства людей (99%). Потребности женщин составляют приблизительно две трети от количеств, указанных для мужчин. [c.389]

    Вскоре стало ясно, что глутамин и аспарагин следует рассматривать как растворимые и нетоксичные переносчики дополнительного количества аммиака, заключенного в их амидных группах. Под действием активной синтетазы из глутамата и аммиака образуется глутамин [уравнение (14-12), стадия г], а под действием другого фермента происходит перенос амидного азота на аспартат с образованием аспарагина [уравнение (14-12), стадия д]. Амидный азот глутамина используется в многочисленных биохимических процессах, в том числе в образовании карбамоилфосфата [уравнение (14-12), стадия е разд. В, 2], глюкозами-на [уравнение (12-4)], NAD+ (разд. И), пуринов (разд. Л,3), СТР (разд. Л, 1), tt-аминобензоата (разд, 3,3) и гистидина (разд. К). [c.89]

    По контролю гены группируются в две четкие группы. Оперон является единицей транскрипции мРНК и может содержать один, два или несколько генов. Все они контролируются единственным промотором и выражаются в образовании единственной молекулы мРНК- Такие группы генов часто связаны с образованием продуктов, используемых для близко родственных биохимических задач. Например, десять белков, ответственных за биосинтез гистидина, сгруппированы в его оперон. В свою очередь, опероны могут быть объединены в кластеры. Кластер str-sp имеет дело примерно с 60 белками, которые все включаются в структуру рибосомы, а также с одной субъединицей РНК-полимеразы. Поскольку в настоящее время мало что известно о функции кластеров, изучение [c.203]

    Точно так же биохимическое превращение аминокислот в амины имеет некоторое значение. Так, из гистидина почти количественно получается гистамин или р-имидазолилэтил-а м и н под влиянием специфического микроорганизма, выделяемого из загнившей зобной железы  [c.559]

    Из 1,3-азолов только оксазол не участвует в основных биохимических процессах, однако существуют вторичные метаболиты (особенно в морских организмах), которые включают в себя структуру тиазола (и оксазола), например антибиотик цистотиазол А из бактерий y toba terfus as [3]. Система имидазола лежит в основе незаменимой аминокислоты гистидина, выполняющей важные функции в процессах ферментативного протонного переноса. Родственный гистидину гормон гистамин вызывает расширение сосудов и служит основным фактором в аллергических реакциях, таких, как сенная лихорадка. Тиазолиевый цикл представляет собой активный химический центр кофермента тиамина (витамина Bi). [c.506]

    Изучены биохимические свойства многочисленных низкомолекулярных альбуминов, встречающихся в мышцах рыб [283, 284]. Хотя физиологическая функция этих белков молекулярного веса около 11 ООО неизвестна, они отличаются необычным аминокислотным составом — содержанием около 10% фенилаланина, 20% аланина и малым содержанием или отсутствием триптофана, тирозина, метионина, гистидина, цистеина и аргинина. Кроме того, они характеризуются высоким сродством к кальцию. Все это наводит на мысль, что альбумин карпа, возможно, аналогичен тро-понину А млекопитающих и мышц птиц [285] и, следовательно, может служить посредником участия кальция в мышечном сокращении [286]. [c.113]

    Особенно интересно то, что последовательность расположения локусов А — G, связанных с синтезом гистидина, которая была установлена в генетических экспериментах, в основном соответствует биохимической последовательности разных этапов в процессе образования гистидина. Это показано в нижней части фиг. 122. Так, например, мутанты в локусе В прерывают процесс превращения имидазол-глицеринового эфира фосфорной кислоты в имидазол-ацетоловый эфир этой кислоты, а мутация в локусе С прерывает превращение последнего вещества в имидазол-гистидиноловый эфир фосфорной [c.267]


    В начале нашего столетия Эрлих описал биохимическое расщепление серии аминокислот. Оказалось, что дрожжи в процессе брожения перерабатывают преилпществснно ь-ф< р-мы аминокислот, а их оптические антиподы накапливаются. Таким путем могут быть выделены с выходом 60—/0% оптически чистые D-изомеры аланина, лейцина, валина, изолейцина, изо-валина, серина, фенилаланина, глутаминовой кислоты, гистидина. Однако подобным биохимическим методом удается расщепить не все аминокислоты. Фенилглицин получается лишь с небольшим вращением, а рацематы аспарагиновой кислоты, пролина и тирозина совсем не расщепляются действием бродящих дрожжей. [c.574]

    При этом А и Д означают соответственно азосоставляющую и диазокомпоненту, АД и ДА — изомерные моноазопроизводные и ДАД—дисазосоединение. Очень странным является то, что-эта столь важная для технологии азокрасителей система была детально изучена кинетически не для области азокрасителей,. а для биохимической реакции азосочетания диазобензол-л-сульфокислоты с гистидином (XVI) [c.201]


Смотреть страницы где упоминается термин Гистидин биохимическое: [c.232]    [c.466]    [c.668]    [c.9]    [c.297]    [c.67]    [c.267]    [c.168]    [c.391]    [c.380]    [c.62]   
Основы стереохимии (1964) -- [ c.574 ]




ПОИСК





Смотрите так же термины и статьи:

Гистидин



© 2025 chem21.info Реклама на сайте