Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика адсорбции химическая, активные центры

    Механизм ионного обмена при очистке газов изучен недостаточно полно. Предполагается, что он включает следующие основные стадии 1) диффузия вытесняющих ионов из ядра газовой фазы к поверхности ионита 2) диффузия вытесняющих ионов с поверхности ионита внутрь его зерна к точкам обмена 3) обмен ионов на активных центрах 4) диффузия вытесненных ионов из зерна ионита к его поверхности 5) диффузия вытесненных ионов с поверхности ионита в ядро газовой фазы. Таким образом, скорость ионообменного процесса лимитируется скоростью наиболее медленной стадии. Скорость реакции этой стадии можно определить из уравнений кинетики физической адсорбции или хемосорбции, приведенных ранее. Например, скорость протекания третьей стадии характеризуется уравнением кинетики химической реакции, а скорость диффузии — уравнениями массообмена. Подробно закономерности кинетики [c.84]


    Современное изучение адсорбционных и каталитических свойств твердых пористых тел немыслимо без знания площади их поверхности и внутренней структуры. Эти показатели с точки зрения физической адсорбции и каталитических процессов наряду с химической природой поверхности являются наиболее важными характеристиками адсорбентов и катализаторов. Во-первых, величина удельной поверхности определяет количество вещества, адсорбируемого единицей массы адсорбента, дает необходимые сведения о характере адсорбционного процесса, о наличии моно- или полимолекулярно-адсорбцион-иых слоев, позволяет сравнить результаты теоретических вычислений адсорбции, поверхностной энергии, работы и теплоты адсорбции с экспериментальными данными и целым рядом других факторов, тесно связанных с применением адсорбентов (катализаторов) в различных отраслях промышленности и народного хозяйства. Во-вторых, удельная поверхность и структура адсорбентов дают возможность глубже понять механизм адсорбции и гетерогенных каталитических реакций, протекающих на поверхности и в объеме адсорбента (катализатора), позволяют судить о количестве и протяжспности активных центров, а также о кинетике и избирательности сорбционного и каталитического процессов. [c.102]

    Одной из основных задач теоретической химии и, в частности, физической органической химии является установление механизма реакций и оценка реакционной способности в ряду сходно построенных соединений. Среди различных типов химических реакций особое место занимают электрохимические процессы. Они, как известно, протекают в пределах тонкого слоя на границе раздела электрод—раствор и в общем случае включают в себя ряд стадий стадию доставки электрохимически активной формы в зону реакции (диффузия, предшествующие химические реакции), взаимодействие с поверхностью электрода (адсорбция, ориентация реакционного центра по отношению к поверхности электрода и т. п.), стадию переноса заряда, последующие химические и электрохимические превращения первичных продуктов электродной реакции и т. д. Строгий анализ столь сложного процесса встречает большие затруднения и пока вряд ли возможен. Однако при благоприятных условиях удается существенно упростить процесс и получить информацию об отдельных его стадиях. Значительный прогресс достигнут в понимании роли предшествующих реакций протонизации, в представлениях о механизме и кинетике каталитических реакций, адсорбции, о влиянии строения двойного электрического слоя на кинетику электродных процессов. Однако имеется сравнительно мало данных о процессах с последующими химическими стадиями. Между тем влияние этих реакций на кинетику процесса в целом и природу образующихся стабильных продуктов трудно переоценить. Более того, невозможно глубокое понимание механизма электродного процесса без учета химизма и кинетики последующих реакций. [c.138]


    Уравнения кинетики Ленгмюра — Хиншельвуда выводятся на основе предположения об ограниченной активности поверхности катализатора. Предполагается, что химическое превращение может происходить только при участии молекул, попавших при адсорбции на активный центр катализатора. Число активных центров на единице поверхности (поверхностная концентрация) принимается ограниченным. Кроме того, для упрощения принято, что каждый активный центр может удерживать лишь определенное число молекул (или атомов) реагирующего вещества (обычно одну). При таких предпосылках скорость химического превращения оказывается пропорциональной концентрациям реагирующих веществ, адсорбированных на поверхности, т. е. поверхностным концентрациям. [c.173]

    Химические процессы в смешанной области протекают при соизмеримых скоростях химического превращения и диффузии. Здесь уже существенно одновременное влияние диффузии и кинетики химического превращения и необходимо находить суммарную скорость процесса. При этом механизм и уравнения скорости гетерогенных каталитических реакций можно выражать через давления компонентов реакционной смеси и для описания скорости процесса использовать концепцию адсорбции и десорбции реагентов и продукта реакции на активных центрах [1]. Подбор уравнений кинетики может производиться несколькими способами, в том числе и при помощи вычислительных машин. [c.79]

    Полак Л. С., Неравновесная химическая кинетика и ее применение, М., 1979. Л. С. Полак. РАДИАЦИОННАЯ ПОЛИМЕРИЗАЦИЯ, инициируется радикалами, положит, и отрицат. ионами, образующимися при взаимод. с в-вом излучения высокой энергии (напр., рентгеновского и 7-лучей, а- и (3-частнц, ускоренных электронов, протонов и др.). К Р. п. способны любые мономеры. Механизм зависит от их строения и условий р-дии (т-ра, природа р-рителя). Наиб, часто процесс проводится в жидкости, твердой фазе (см. Твердофазная полимеризация) и в адсорбц. слоях. Кинетика Р. п. в жидкости, структура образующихся полимеров и состав сополимеров определяются природой активного центра (радикальная, ионная). Особенности Р. п.— независпмопь скорости инициирования от т-ры, легкость регулирования мовщости дозы, Высокая степень чистоты получаемых полпмеров, возможность продолжения р-ции.после выключения источника излучения (пост-полимеризация), особенно в эмульсиях, с образованием полимеров высокой мол. массы. [c.488]

    В гетерогенном катализе внутренняя сложность может иметь своим источником неоднородность поверхности, участие в каталитическом процессе нескольких или многих стадий и нескольких или многих направлений, выход реакций в объем и т. д. С неоднородностью нельзя не считаться. Ее значение и многообразие проявлений делается с каждым годом все более очевидным. Причем все явственнее становится большая роль качественной химической неоднородности. Неоднородность обусловливает множество характерных явлений в равновесиях и кинетике адсорбции и особенно в кинетике каталитических реакций. Неоднородность поверхности можно уменьшить, работая с модельными твердыми телами, например с монокристаллами. Но она часто появляется в результате самой каталитической реакции и может быть необходимой для осуществления ее определенных стадий. Часто полезное модифицирование обусловлено созданием особых форм неоднородности на поверхности катализатора. Но наряду с этим на поверхности твердых катализаторов обычно присутствуют нежелательные активные центры, вызывающие вредные побочные реакции и снижающие селективность катализа. В этом отношении гомогенные катализаторы имеют несомненное преимущество. [c.6]

    Уже на ранних стадиях изучения газовых реакций, происходящих на поверхности твердых тел, было найдено, что их первой стадией является адсорбция реагентов, а по завершении процесса десорбция продуктов. Поэтому при рассмотрении кинетики гетерогенных каталитических реакций используют различные изотермы адсорбции, которые позволяют определять связь между концентрациями реагирующих веществ па поверхности твердого тела и в объеме. Так, уравнение изотермы Лангмюра (гл. XV) применяют для рассмотрения кинетики мономолекулярной реакции Аг- Вг, происходящей на поверхностн твердого тела. Так как обычно адсорбционное равновесие устанавливается существенно быстрее, чем протекает химическое превращение, то скорость реакции пропорциональна поверхностной концентрации газа в адсорбированном слое или, что то же, доле занятых активных центров 0 на поверхности катализатора  [c.525]

    Известны попытки рассмотреть внутреннюю задачу кинетики адсорбции как химическое взаимодействие адсорбируемых молекул с некоторым числом активных центров поверхности. Например, для случая сорбции одной молекулы на двух адсорбционных центрах одновременно Трепнел [31] приводит уравнение [c.214]


    В общем предполагается, что диффузия идет через слой адсорбированных молекул, достигая активных мест поверхности. Другими словами, диффузия из газовой фазы совершается перпендикулярно поверхности через адсорбированный слой заметной толщины. Если дифф ия происходит быстрее, чем адсорбция газов, то должен получиться низкий температурный коэфициент реакции. Боденштейн [9] фактически нашел более высокие коэфициенгы, чем те, которые обычно можно ожидать при диффузии газов. Объяснение механизма адсорбционного катализа с помощью кинетики затруднительно вследствие сложности гетерогенного каталитического процесса, включающего такие процессы, как адсорбция, химическая реакция и десорбция реагирующих продуктов, а также миграция молекул на каталитической поверхности в направлении активных центров. Среди рассматри- [c.131]

    Гипотезе о том, что бензол при гидрогенизации находится во внешнем, вандерваальсовом слое, противоречат важные факты. Во-первых, как известно, гидрогенизация олефинов идет через полу-гидрированную форму, в которой атомы С соприкасаются с металлом нет оснований предполагать, что гидрогенизация бензола не проходит через аналогичные формы. Во-вторых,теплота ваидервааль-совой адсорбции явно недостаточна для химического возбуждения молекулы бензола. В-третьих, гипотеза Селвуда не учитывает того, что каталитически активна не вся адсорбирующая поверхност никеля, а лишь небольшая ее часть. Поэтому требуется дальнейшее исследование, чтобы согласовать данные магнитных пзмеиений с этими фактами. Механизм гидрирования бензола более сложен, чем полагает гипотеза Селвуда. Кинетика реакции гидрогенизации- и дейтерообмена на никеле полнее всего описывается плоскостным, секстетным расположением бензола на поверхности, несущей два вида активных центров, из которых одни преимущественно активируют водород, а другие — бензол [A.A. Баланд и и. ЖОХ, [c.35]

    Глава VII Цепные реакции дополнена рассмотрением роли возбужденных молекул в цепных реакциях, толуольного метода определения энергии связи в органических молекулах, количественных зависимостей от концентрации и температуры нижнего и верхнего пределов самовоспламенения написан новый 3 Обрыв цепи . Большим изменениям подверглась глава VIII Фотохимия , которая дополнена кинетическими расчетами квантовых выходов и 4—7. Глава IX Химическое действие излучений большой энергии включает новый дополнительный материал по принципам дозиметрии, радиолизу воды, новый текст 6. Сильно изменена глава X Каталитические реакции . Особенно большие изменения и дополнения сделаны в разделе Гомогенные каталитические реакции , расширен параграф, посвященный разложению перекиси водорода, кислотноосновным реакциям и их классификации. В разделе Гетерогенные каталитические реакции более подробно рассмотрены переходы реакций из кинетических областей протекания в диффузионные области, дополнен 16. В главе XI Теория активных центров в катализе написаны новые 4, 11, расширено изложение электронного механизма адсорбции и химических реакций на полупроводниках. В главе XIV Применение меченых атомов в химической кинетике написан новый 4 Изотопные кинетические эффекты . [c.13]

    Помимо этих адсорбционных явлений, известны другие многочисленные факты, свидетельствующие о неоднократности многих катализирующих поверхностей и о существовании активных центров, на оторых реакции преимущественно и протекают. В частности, следует упомянуть о явлениях, сопровождающих взаимодействие водорода и углекислоты на поверхности платины вблизи 1000°С. При этой температуре водород сильно адсорбирован, в то время как углекислота адсорбирована сравнительно мало. Однако при относительно высоких давлениях углекислоты скорость реакции пропорциональна давлению водорода и обратно пропорциональна давлению углекислоты [ ]. Очевидно, кинетика реакции определяется преимущественной адсорбцией углекислоты, хотя в целом количество адсорбированного водорода больше, чем углекислоты. Отсюда следует, что химическая реакция происходит только на некоторых центрах, на которых углекислота адсорбируется сильнее водорода. Известно также, что поверхность ллатины, отравленная углекислотой и неактивная по отношению к редакции между углекислотой и водородом, сохраняет свою обычную каталитическую активность по отношению к реакции разложения закиси азота. [c.378]

    Если удается установить минимальные и максимальные значения энергии активации простой реакции пли таковые стадий сложной реакции, например путем анализа изотерм отравления (см. гл. IV), и постулировать либо оценить функцию распределения активных центров поверхности по энергиям, то численнымн методами можно проиграть на ЭВМ кинетику реакции и потом аппроксимировать полученные зависимости теми или иными кинетическими уравнениями. Этот метод лежит в основе первого из упомянутых подходов. В [91] для некоторых механизмов реакций табулированы функции, позволяющие вывести соответствующие кинетические уравнения при наличии стадийной схемы реакции. Если скорость реакции на поверхности катализатора сравнима со скоростью адсорбции, то адсорбционное равновесие не достигается и степени заполнения поверхности реагентами нельзя определить из уравнения изотермы адсорбции. Скорость реакции может быть найдена из уравнения баланса потоков адсорбции и десорбции реагентов и потока химической реакции [26]  [c.55]

    Массовой кристаллизацией называют процесс, протекающий в условиях, далеких от кристаллизационного равновесия, при больших и постоянно возобновляемых пересыщениях раствора или переохлаждениях расплава. Продуктом 1массовой кристаллизации является дисперсная структура мелкокристаллических солей с развитой поверхностью и многочисленными активными центрами адсорбции и адгезии. Большое удаление системы от кристаллизационного равновесия обусловливает высокую скорость процесса, что неизбежно приводит к возникновению множества различных дефектов кристал- тической решетки. В свою очередь, образовавшиеся дефекты в значительной мере влияют на кинетику кристаллизации, соосаждение примесей, изменяют химическую активность твердой фазы. Примеси посторонних веществ, в виде растворенных солей или взвесей, существующие в технических растворах, ускоряют рост кристаллов, приводят к изменению их формы, увеличению числа и прочности фазовых контактов. Таким образом, продукт массовой кристаллизации существенно отличается от кристаллов, полученных в условиях, близких к равновесию. [c.45]

    В более ранних работах [1 —6, 9, 11] при изучении влияния химического состава синтетических алюмосиликатов с практически одинаковой величиной доступной поверхности на каталитическую активность были получены интересные данные о природе активных центров этих катализаторов. Дрименяя метод селективного отравления, было показано, что алюмосиликатные катализаторы обладают активными центрами двух видов кислотные центры, обусловленные наличием водорода в алюмосиликатном комплексе, и окисные центры — их активность обусловлена наличием поверхностных гидроксильных групп, связанных с алюминием. С первым видом активных центров связаны реакции углеводородов (крекинг, перераспределение водорода, полимеризация, алкилирование и др.), оо вторым видом — реакции дегидратации спиртов и эфиров. Подтверждением этих представлений явились исследования К. В. Топчиевой и К. Юн-пина [7, 8, 10, 12—15]. В результате детального изучения кинетики дегидратации спирта и простого эфира на окиси алюминия и алюмосиликатах, а также адсорбции паров метилового спирта ими была выдвинута схема дегидратации на этих катализаторах  [c.301]


Смотреть страницы где упоминается термин Кинетика адсорбции химическая, активные центры: [c.6]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.94 ]

Краткая химическая энциклопедия Том 1 (1961) -- [ c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция кинетика

Адсорбция химическая

Активность Активные центры

Активный центр

Кинетика химическая



© 2025 chem21.info Реклама на сайте