Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость массоотдачи в ламинарных потоках

    Механизм конвективной диффузии накладывается на молекулярный перенос, характерный для ламинарного движения и по мере усиления турбулентности потока становится преобладающим фактором. Скорость массоотдачи увеличивается и в соответствии с уравнением Фика (11.15) может быть представлена следующим образом  [c.71]

    Сопоставление приведенных соотношений с аналогичными критериальными зависимостями для интенсивности массообмена между твердыми поверхностями и ламинарными потоками показывает, что при турбулентных течениях усиливается влияние на коэффициент массоотдачи критерия Рейнольдса, т. е. скорости набегающего потока, характерного размера системы и кинетической вязкости потока. [c.40]


    Теоретические решения. Кольборн [162] первым сделал попытку теоретически учесть влияние поперечного потока конденсирующегося пара Уп на интенсивность массоотдачи при конденсации пара из парогазовой смеси. При этом он исходил из упрощенной схемы ламинарного пограничного слоя при турбулентном течении парогазовой смеси, в котором полностью происходит изменение скорости и параметров движущейся смеси от их значений в ядре потока до значений на поверхности пленки конденсата, а в турбулентном ядре скорость и параметры смеси полностью выравнены по сечению. Вызываемое поперечным потоком вещества изменение толщины пограничного слоя Кольборн не учитывал. [c.155]

    Скорость абсорбции в ламинарных жидких пленках, контактирующих с ламинарным газовым потоком, существенно зависит от гидродинамических параметров газового потока. В случаях когда диффузионные сопротивления в обеих фазах сравнимы между собой, следует учитывать условие непрерывности потока массы на границе раздела (см. уравнение (4.5)). Кинетическое уравнение абсорбции имеет вид (4.10), где коэффициенты массоотдачи в фазах определяются уравнениями (4.12). Таким образом, в этом случае нужно решать уравнение диффузии в каждой из двух фаз. [c.92]

    В главе 3 обсуждалось несколько примеров массоотдачи от границы раздела фаз к движущейся среде. Эти примеры ограничивались переносом за счет молекулярной диффузии при известном поле скоростей, как при ламинарном течении. В большинстве важных для практики случаев поток является турбулентным, а поле скоростей —неустановившимся. Вещество переносится как в результате молекулярной так и вихревой диффузии, и строгий анализ процесса обычно не представляется воз.можным. [c.169]

    На основании разработанного в [161 метода определения эффективного коэффициента диффузии в ламинарном потоке жидкости при скорости теченил пленки, рассчитанной по формуле Нуссельта, получается соотношение, которое необходимо учитывать в качестве поправочного члена при вычислении коэффициента массоотдачи или частной высоты единицы переноса в жидкой фазе [c.85]

    В кимической промышленности широко используются пленочные массообменные аппараты, в которых реализуется режим турбулентного движения таза и ламинарного движения стекающей пленки. Чисто ламинарное стека ние жидкости имеет место при числах Рейнольдса Ке = 164-20. В реальных аппаратах, работающих при малых нагрузках по жидкости, то есть при числах Рёйнольдса до Ке = 60 80, происходит переход к волновому режиму стекАния пленки. Однако модель ламин рно стекающей пленки достаточно хорошо описывает процессы массообмена между жидкостью и газом Хатта осуществил теоретический расчет средней концентрации растворяющегося газа в ламинарйо движущейся пленке при допущении, что скорость плёнки по глубине жидкости остается постоянной. Вязовов , Левнч и ряд других исследователей предложили решение уравнения конвективной диффузии в жидкой пленке, считая распределение скоростей по толщине пленки параболическим. Однако в упомянутых выше работах система газ — жидкость в целом не рассматривалась. В работе были получены приближенные значения коэффициентов массоотдачи для ламинарного потока газа и ламинарно стекающей пленки. Настоящая работа посвящена изучению массообмена при противоточном движении ламинарной пленки жидкости и турбулентном потоке газа в трубке. [c.76]


    Массообмен. Перенос массы в направлении поверхности соприкосновения фаз может происходить в результате молекулярной диффузии и конвекции, вызва.нной гидростатическими силами, течением потока или использованием перемешивающих устройств. Отдельный случай представляет собой движение турбулентного потока, в котором можно различить две зоны ламинарную (слой около поверхности соприкосновения фаз — пограничный слой) и турбулентную (в глубине фазы — ядро потока). В ламинарном слое вещество переносится главным образом молекулярной диффузией, а в турбулентной зоне в основном вследствие завихрений и флуктуаций локальной скорости движения потока. Считая, что в турбулентной зоне концентрация практически выравнивается, перенос массы в такой системе можно представить как молекулярную диффузию через пограничный ламинарный слой с эффективной (приведенной) толщиной. Перенос вещества до границы раздела фаз называется массоотдачей. [c.244]

    Для частиц, у которых пульсационная скорость турбулентного переноса существенно превышает скорость их миграции Ум под действием каких-либо внешних или массовых сил, ламинарный слой играет определяющую роль в их осаждении. В этом случае турбулентное ядро 1Ютока является основным поставщиком частиц в ламинарный слой, где миграционные силы доводят частицу к стенке на расстояние, определяемое толщиной ламинарного слоя. Как один из самых простых вариантов моделирования, можно по аналогии с коэффициентами тепло- или массоотдачи ввести в рассмотрение для частиц /-й фракции некий коэффициент частицеотдачи Р/, который тождественен скорости М1прации частицы к стенке. Тогда выражение для удельного массового потока частиц к стенке можно представить в виде [c.168]

    При движении газа в каналах с орошаемыми стенками переход от ламинарного движения газа к турбулентному происходит так же, как и в трубах при Rep 2300. Однако резкого изменения скорости массопереноса при этих числах R r не наблюдается. При ламинарном режиме течения соотношения для расчета коэффициента массоотдачи в газовой фазе Рг можно найти, решая задачу массообмена газового потока с неподвижной стенкой путем интегрирования уравнения конвективной диффузии (5.2.2.1). Предполагается, что движение газа стационарно и прямолинейно и продольным диффузионным переносом вещества можно пренебречь по сравнешио с конвективным. В этом случае [c.292]

    В большинстве случаев обтекание частиц как реальной, так и правильной геометрической формы происходит при таких численных значениях критериев Рейнольдса, когда имеет место отрыв пограничного слоя от поверхности частиц (см. рис. 1.3) и характеры движения вязкой жидкости вблизи лобовой части и в кормовой области частицы оказываются существенно различными. Если частица мала, то пограничный слой на ее поверхности не успевает турбулизироваться до точки его отрыва, и поток целевого компонента поперек ламинарного пограничного слоя на лобовую часть частицы может быть определен по соотношениям для ламинарного пограничного слоя (1.28). Ниже точки отрыва (6 я/2) течение вязкого потока носит неупорядоченный, вихревой характер анализ массообменных процессов в этой области теоретическими методами затруднителен. Для приближенной оценки массоотдачи в кормовой зоне можно воспользоваться соотношениями, справедливыми для турбулентного режима обтекания поверхности, при зтом в качестве характерной скорости принимается скорость набегающего потока. Расчетные оценки показывают, что количества целевого компонента, поступающие на частицу округлой формы в лобовой и кормовой ее частях, сравнимы по величине. По мере увеличения скорости набегающего потока интенсивность массоотдачи в кормовой области увеличивается, поскольку зависимость интенсивности массообмена от скорости для турбулентного режима более значительная, чем для ламинарного (показатель степени при критерии Рейнольдса 0,8 против 0,33, соответственно), [c.41]

    Для гладкой ламинарной пленки жидкости (число Рейнольдса Reи<=40/v < 1600, где О — линейная плотность орошения, V — кинематич. вязкость жидкости) в условиях ее гравитац. стекания и умеренных скоростей газа разработаны теор. методы расчета гидродинамич. параметров течения и коэф. тепло-и массоотдачи в фазах. Однако уже при Не > 20—40 в реальных условиях пов-сть пленки покрывается системой нерегулярных волн, к-рые оказывают существенное влияние на перепад давления в орошаемом канале и коэф. массо- и теплоотдачи в фазах. В условиях интенсивного прямоточного течения процессы переноса кол-ва движения, теплоты и массы осложняются также сильным гидродинамич. воздействием потока газа на среднюю толщину, профиль скорости и др. характеристики пленки жидкости и наличием брызгоуноса (унос капель жидкости потоком газа, к-рые срываются с гребней волн и вновь падают на пов-сть пленки). В этих случаях рассчитывают осн. гидродинамич. параметры пленочного течения и коэф. массо- а теплообмена, обычно по полузмпирическим зависимостям. [c.449]


    Известно очень большое число данных по испарению жидкостей из лотков, расположенных на дне небольшой аэродинамической трубы. Плюэс и др. [19, 169] измеряли скорости сублимации некоторых органических твердых веществ, осуществляемой с нижней поверхности квадратного канала, через который при ламинарном режиме пропускали поток воздуха. Для этого случая исследователи вывели теоретическое уравнение, которое является разновидностью соотношения Грэтца, установленного для тепло- или массоотдачи в круглых трубах при ламинарном течении среды. Досон и Трэсс [38] опубликовали данные по массоотдаче от дна квадратного канала в воду при ее турбулентном движении. [c.232]


Смотреть страницы где упоминается термин Скорость массоотдачи в ламинарных потоках: [c.170]    [c.449]   
Массопередача (1982) -- [ c.93 , c.101 , c.103 , c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Ламинарный поток скоростей

Массоотдача

Массоотдача в ламинарном потоке

Поток ламинарный



© 2024 chem21.info Реклама на сайте