Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Логнормальное распределение

    Чтобы перейти от записи логнормального распределения для безразмерной величины (7.34) к распределению для размерной величины объемов частиц положим у = У/У и, пользуясь правилом преобразования для определения плотности распределения функции случайной величины 1122], получим [c.139]

Рис. 7.11. Зависимости коэффициентов усиления отстойников с разными передаточными функциями от безразмерных переменных X и при логнормальном распределении капель эмульсии по объемам. Рис. 7.11. <a href="/info/26365">Зависимости коэффициентов</a> усиления отстойников с разными <a href="/info/30536">передаточными функциями</a> от <a href="/info/107027">безразмерных переменных</a> X и при логнормальном распределении капель эмульсии по объемам.

    Для оценки точности интерполяции по формуле (5.98) при С=1 были проведены численные расчеты дробных моментов гамма- и логнормальных распределений. Результаты показали, что относительная ошибка интерполяции монотонно убывает с ростом п, при увеличении дисперсии исследуемых распределений, а также при увеличении порядка интерполируемого момента. Так, относительная ошибка интерполяции при С= 1 для начальных дробных моментов гамма-распределения зависит только от его параметра формы Р и имеет порядок 10 2 при р=2 и порядок 10 при р=5. С ростом р ошибка монотонно убы- [c.104]

    Кривая распределения пустот по размерам = f (d) не подходит ни к нормальному, ни к логнормальному распределению. Это обусловлено тем, что кривая (см. рис. 111) не имеет продолжения в область отрицательных аргументов и при том резко асимметрична. Из известных классических кривых распределений к кривой % =- f d) наиболее близка кривая Пирсона V рода, являющаяся асимметричной. [c.252]

    Рассчитывается значение математического ожидания Мх случайной величины, которое принимается за среднее значение фона. Для нормального распределения за М можно принять среднее арифметическое содержание компонента. Для логнормального распределения Мх рассчитывается [c.15]

    Проведенные расчеты [79-82] показали, что усредненная по различным пикам доля лоренцевой компоненты в функции Фойгта постепенно возрастает от 46% в крупнокристаллическом состоянии практически до 100 % по мере увеличения числа оборотов, т. е. степени деформации (см. 1.1), при ИПД кручением (рис. 1.19). Профили рентгеновских пиков N1, подвергнутого ИПД кручением с числом оборотов, равным 6, так же как и в случае Си, характеризуются преимущественно лоренцевой компонентой, составляющей в среднем 90% [79-82]. Обнаруженное увеличение доли лоренцевой компоненты в форме профиля рентгеновских пиков свидетельствует о логнормальном распределении кристаллитов по размерам и об упорядочении в распределении дислокаций в исследованных материалах по мере роста степени ИПД. [c.34]

    При несоблюдении хотя бы одного из двух неравенств нулевая гипотеза о нормальном распределении отвергается, и выборку подвергают проверке соответствия ее логнормальному распределению. Для этого рассчитывают величины Л и  [c.432]

    Логарифмически нормальным является распределение, при котором нормально распределены логарифмы значений случайной величины. Функция плотности логнормального распределения имеет вид [c.14]

    Гипотеза о логнормальном распределении выдвигалась, если [c.118]

    Проведенная нами графическая проверка закона распределения основных показателей содержания органического вещества — Сорг., Сорг. лет. п органических кислот — показала, что для них характерна логнормальное распределение (рис. 26, [c.149]


    Примечание. С ес.м максимальное из среднемесячных значение концентрации вредного вещества за год (мг/м ) Сср.г. среднегодовое значение концентрации вредного вещества (мг/м ) aj — среднее квадратичное отклонение среднемесячных значений концентрации вредного вещества от среднегодового значения — коэффициент вариации концентраций См/ (Р = 5%) — максимальная концентрация, полученная из предположения логнормального распределения концентраций вредного вещества в атмосфере при 5% вероятности ее превышения (С ). [c.244]

    Поэтому зная характеристики логнормального распределения СКС, всегда можно оценить среднюю величину конценграции изучаемого поллютанта в ливневом стоке с урбанизированной территории. [c.33]

    Сопоставление, с учетом отмеченных особенностей, было выполнено по методике [1] для случаев нормального и логнормального распределения ошибок анализа. [c.190]

    Как пишет И. П. Шарапов [205], в геологии нередко приходится сталкиваться с логнормальным распределением случайных величин, в частности содержаний химических элементов в гранитах (Л. Г. Аренс это явление назвал основным законом геохимии). Д. А. Родионов [156] показал, что логнормальная функция является наиболее распространен- [c.150]

    Как показали наши исследования, вышесказанное полностью относится к органической составляющей подземных вод. Геохимический смысл логнормальных распределений компонентов органического вещества подземных вод еще не совсем ясен, но предположительно можно говорить о наличии доминирующих факторов и преобладании неравновесных физикохимических обстановок. [c.150]

    В качестве потенциальных теоретических распределений были исследованы широко известные в инженерной практике экспоненциальное, гамма-распределение, распределения Релея, Вейбулла и логнормальное распределение. Все они удовлетворяют нужным требованиям  [c.61]

    Большую дополнительную информацию можно получить по различным экспозициям от разных изотопов одной и той же примеси, что позволяет аналитику оценить дисперсию данного анализа. Это позволяет также проверить, действительно ли подчиняются результаты логнормальному распределению с ожидаемым коэффициентом вариации. Многие факторы снижают качество анализа. Некоторые ошибки поправимы, некоторые находятся в пределах контроля со стороны аналитика, а иные просто необъяснимы. Тщательное изучение коэффициента вариации каждого анализа помогает выявить результаты, в которых допущена ошибка. Если потребитель результатов анализа способен интерпретировать коэффициенты вариации, их следует прилагать к данным. [c.213]

    Гипотеза о логнормальном распределении была опровергнута и экспериментально, и теоретически. Экспериментальные измерения функции распределения вероятности показывают, что в координатах (1п8,1пР) функция распределения имеет несимметричный вид, в то время как логнормальное распределение в таких координатах должно приводить к параболе. [c.25]

    Требования к данному графическому методу нормальное или логнормальное распределение компонента. Метод позволяет достаточно просто оценить искомые фоновые концентрации исследуемого компонента. [c.16]

    ДЛЯ вычисления которых необходима идентификация эмпирического распределения ф(г) теоретическому закону. Идентификация с использованием критерия согласия показывает, что экспериментальные распределения в зависимости от р-Г-парамет-ров, длительности процесса и химического состава среды кристаллизации чаще всего эквивалентны нормальному и логнормальному распределению, реже распределению с отрицательной асимметрией. Вычисленные по известным формулам значения моды (или МО) являются состоятельными оценками параметров теоретического распределения. Закономерная связь полученных значений с условиями кристаллизации позволяет использовать их в качестве размера г, характеризующего с определенной вероятностью весь ансамбль кристаллов, а оценки СКО — как показатель неоднородности его гранулометрического состава. [c.366]

    Тесты, основанные на pa пpeдeлeнии или / -распределении, не являются единственными способами оценки геохимических данных. Многие из имеющихся теперь серий многочисленных данных можно перевести в частотные распределения и затем проверить на критерий согласия Х - Его используют для оценки вероятности того, что данная серия экспериментальных результатов согласуется с данной теорией, как, например, вероятность того, что серия повторных определений одной пробы распределяется нормально около среднего значения, чего следует ожидать при использовании метода, свободного от систематических ошибок. В следующем примере серии значений для вольфрама в классе силикатных пород проверены на критерий согласия с целью оценки подчиненности закону логнормального распределения. [c.71]

    Так же как pa пpeдeлeния Стьюдента и распределения / -значений, величины критерия согласия находятся в руководствах по статистическому анализу. Они существуют как в виде таблицы значений, так и в виде графика значений у для нескольких вероятностей с различными степенями свободы. В примере имеется четыре класса частот, но знание трех из них автоматически дает четвертый. Поэтому имеется только три степени свободы. Табличному значению х 2,75 при трех степенях свободы соответствует вероятность Р между 0,30 и 0,50. Другими словами, имеется 30—50%-ная вероятность того, что результаты на вольфрам в гранитных породах образуют часть логнормального распределения. Это рассматривается как очень хорошее согласие между наблюдаемой и ожидаемой частотами. [c.73]


    У. Кромбейп и Г. Монк [54] в своих лабораторных исследованиях, исходя из представлений о логнормальном распределении диаметров зерен песка, принимали в качестве основных геометрических параметров породы среднегеометрический диаметр дц и среднеквадратичное отклонение 0ф величины Ф = 1о 2 Проведя опыты со смесями фракций флювиогляциальпого песка, [c.10]


Смотреть страницы где упоминается термин Логнормальное распределение: [c.105]    [c.63]    [c.450]    [c.119]    [c.179]    [c.227]    [c.24]    [c.123]    [c.32]    [c.33]    [c.12]    [c.15]   
Горение Физические и химические аспекты моделирование эксперименты образование загрязняющих веществ (2006) -- [ c.227 ]




ПОИСК







© 2024 chem21.info Реклама на сайте