Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение компонентов органических веществ

    Комплексное использование сырья — одна из важнейших народнохозяйственных задач. Раньше из сырья, содержащего несколько ценных компонентов, выделяли в данном производстве какой-либо один, остальные же или оставались в продукте балластом, или шли в отходы (отбросы) производства. При полной комплексной переработке сырья отходы производства отсутствуют все компоненты сырья полезно расходуются с образованием индивидуальных ценных продуктов. Уже отмечалось, что сырье составляет 60—70% (и более) себестоимости продуктов химической промышленности. При комплексном использовании сырья одновременно с целевыми продуктами получаются не менее ценные побочные, для обособленного производства которых понадобились бы затраты дополнительных количеств сырья. Комплексная переработка сырья расширяет сырьевую базу, снижает себестоимость химической продукции. Благодаря большим экономическим преимуществам масштабы комплексного использования сырья в промышленности постоянно возрастают. Комплексная переработка сырья достигается двумя путями во-первых, разделением пород на составляющие их минералы, т. е, методами обогащения сырья во-вторых, разнообразной химической переработкой сложного сырья с выделением его составных частей в виде ценных продуктов. Многие горные породы, сложные минералы, включающие много элементов и многокомпонентные смеси органических веществ, подвергаются комплексной переработке. При этом из одной горной породы можно получать различные металлы, неметаллические элементы, кислоты, соли, строительные материалы. Таким образом, комплексная переработка приводит к комбинированию различных производств. [c.20]


    Нефть, как уже было указано, представляет собой чрезвычайно сложную смесь взаимно растворимых органических веществ. Разделить ее нацело на составляющие компоненты практически невозможно, но этого для промышленного применения нефтепродуктов и не требуется. На практике нефть делят на фракции, отличающиеся по пределам выкипания. Это разделение проводится на установках первичной перегонки нефти с применением процессов дистилляции и ректификации. [c.120]

    Хорошей иллюстрацией правила уравнивания полярностей является адсорбция органических соединений на углях. На рис. HI.17 представлена диаграмма избирательности адсорбции органических веществ из водных растворов на активном угле КАД. По осям координат представлены мольные доли адсорбирующихся компонентов без учета растворителя (воды), и поэтому получены зависимости, подобные уравнению (III. 97). Из этой диаграммы видно, что на активном угле КАД можно разделить анилин и нитроанилин, причем последний преимущественно остается в водной фазе (кривые 1а и 16). Анилин адсорбируется несколько хуже фенола, но их коэффициенты разделения небольшие. В результате избирательность адсорбции в системе фенол—анилин мала (кривые 2а и 26). Это объясняется тем, что полярности фенола и анилина близки и значительно меньше, чем полярность нитроанилина, который поэтому сильнее удерживается водной фа-< ЗОЙ и меньше — неполярной поверхностью активного угля. [c.155]

    Подобно экстракции, метод дистилляции можно применить для разделения в системах с близкими константами распределения, однако при этом необходима операция фракционирования. Фракционную дистилляцию особенно широко применяют для разделения компонентов органических систем. Для разделения неорганических веществ фракционирование, как правило, не применяют тем не менее разделение многих неорганических веществ можно-осуществить простой дистилляцией, как это следует из табл. 29-4. [c.253]

    Граница между этими двумя категориями очень не ясная. Например, минеральные вещества, которые отложились в торфяных болотах одновременно с растительным материалом, могли вступить в контакт с органическими веществами во время метаморфизма и включиться, таким образом, в состав минеральных компонентов материнского вещества угля. На практике при решении проблемы обогащения породы разделяются на два класса согласно их податливости к разделению породу, которую невозможно отделить, включающую компоненты — неорганические вещества растений, связанные, как полагают, с органическим веществом, и породу, которая весьма тонко распределена. [c.41]


    Основной характеристикой этого типа хроматографии является то, что смеси помещают в стеклянную трубку, заполненную порошком, через который они элюируются посредством растворителей. В результате для разделения компонентов смесей применимы два типа разделительных колонок. В первых из них (адсорбционных) используются адсорбционные свойства твердых материалов в отношении компонентов смеси. Применение адсорбционных колонок более эффективно при разделении смесей органических веществ, [c.266]

    Настоящая глава посвящена изложению хода качественного исследования и возможно полного разделения смесей органических веществ различного состава, а также методов идентификации отдельных компонентов таких смесей. В силу самой природы органических соединений—их многочисленности и сходства целых классов (например, гомологов), полностью эту задачу разрешить не удается. [c.210]

    В ряде случаев процесс экстракции усложняется, в частности, вследствие химической реакции, протекающей в объеме или на поверхности раздела фаз. При определенных условиях для лучшего разделения исходного раствора применяют специфические способы экстракции. Так, например, исходный раствор, представляющий собой смесь органических веществ, оказывается целесообразным обрабатывать двумя взаимно нерастворимыми экстрагентами, между которыми распределяются извлекаемые компоненты (стр. 537). Для облегчения перехода экстрагируемых компонентов, например солей металлов, в органическую фазу иногда применяют высаливание, осуществляемое путем добавки соли с одноименными ионами в исходный водный раствор, а также регулируют кислотность или pH раствора, концентрацию экстрагента в инертном разбавителе, служащим для уменьшения его вязкости, и т. д. [c.521]

    Необходимость разделения смесей органических веществ на компоненты встречается довольно часто. Одним из способов разделения является кристаллизация из расплавов [5, 27]. В частности, таким путем разделяется смесь нафталина с (3-нафтолом. Разделение в процессе кристаллизации может проводиться в аппаратуре различного типа. Для разделения нафталина и р-нафтола, например, использовалась охлаждаемая труба, играющая роль своеобразного противоточного каскада. [c.296]

    Следует отметить, что разделение элементов на макро- и микроэлементы по их содержанию в растениях не признается сейчас достаточно убедительным, поскольку, например, количество относимых к микроэлементам Мп, Ре и С1 в растениях может быть значительным. Поэтому классификация элементов, по-видимому, более целесообразна иа основе их биохимической роли и физиологических функций. Например, С, Н, О, К, Р и 8 — это основные компоненты органического вещества К, Mg, Са, Мп, С1 обладают неспецифическими функциями — участвуют в осмотической регуляции, балансе электронов и проницаемости мембран Мп активирует киназы, трансферазы, декар- [c.281]

    Органические компоненты водных растворов. Во многих случаях промышленные сточные воды содержат одновременно неорганические и органические загрязнения. Оценить результаты очистки таких вод обратным осмосом в настоящее время невозможно, так как установленные при разделении растворов неорганических или органических веществ закономерности могут не соблюдаться в смешанных системах. [c.194]

    В зависимости от природы веществ компоненты смеси могут обладать ограниченной взаимной растворимостью, образуя, таким образом, отдельные фазы многокомпонентной системы. В простейшем случае при смешении жидкостей образуются две фазы, в каждой из которых содержатся отдельные компоненты органического и неорганического происхождения. Иногда такие системы образуются искусственно путем добавления компонента, склонного к избирательному растворению. Добавление такого компонента (разделяющего агента) изменяет условия фазового равновесия системы, увеличивая движущую силу процесса, и позволяет применить специальный метод для разделения компонентов исходной смеси. Часто введение разделяющего агента в исходную смесь обуславливается не столько близостью свойств компонентов, а склонностью к разложению, полимеризации и т. п. при высоких температурах. [c.285]

    Ионообменный хроматографический метод, основанный на процессе ионного обмена с использованием в качестве ионообменных материалов природных или синтетических неорганических илн органических веществ. Процесс разделения обусловливается различием констант обмена разделяемых компонентов [c.375]

    В дальнейшем химики всего мира приобрели в газо-жидкостной хроматографии мощный и вместе с тем простой универсальный метод разделения и анализа сложнейших смесей самых разнообразных, в основном органических, веществ. Для анализа нужно, чтобы компоненты смеси были летучи и стойки при температуре разделительной колонки летучесть может быть минимальная и лишь достаточная для обнаружения детектором паров, выходящих вместе с газом-носителем из колонки. Детекторы в настоящее время обладают настолько высокой чувствительностью, что отмечают концентрацию паров 10 объемн, % и менее, например пламенно-ионизационный детектор. Это позволяет, с одной стороны, разделять и анализировать высококипящие вещества (при условии, если неподвижные жидкие фазы практически нелетучи), с другой стороны, работать с микрограммовыми количествами анализируемой смеси. Это особенно выгодно, когда компоненты смеси термически мало устойчивы, а исследователь располагает лишь весьма малыми количествами анализируемого материала. [c.104]


    Эталон-2 . Разработан и выпускается Дзержинским филиалом ОКБА. Представляет собой автоматическую установку циклического действия, предназначенную для хроматографического выделения в изотермическом режиме индивидуальных органических веществ и отдельных фракций из смесей сложного состава с температурой кипения компонентов до 250° С. Предусматривает разделение жидкой и газообразной смесей и сбор разделяемых компонентов в следующих режимах работы 1) полностью автоматический режим 2) ручной ввод пробы и автоматический сбор разделяемых компонентов 3) автоматический ввод пробы и ручное управление сбором разделяемых компонентов 4) ручной ввод пробы и ручное управление сбором разделяемых компонентов. Снабжен препаративными секционными колонками, заключенными в обойму барабанного типа (длина колонки 5—10 м, диаметр 20, 30, ЪО мм), а также аналитическими колонками (длина 8 м, внутренний диаметр 4 мм). Число собираемых компонентов 5 из 15. Детектор пламенно-ионизационный с автоматическим газовым питанием (водород и воздух). Температура колонок постоянная от 40 до 250° С. Объем газовой пробы от 500 до 1500 мл, жидкой — от 2 до 20 мл. [c.257]

    Свойства подвижной и неподвижной фаз. При подборе подвижной и неподвижной фаз, а также носителя необходимо учитывать их свойства. Если носителем является гидрофильное вещество, то в качестве неподвижного растворителя применяют воду, а в качестве подвижного— органический растворитель. Например, для разделения смесей полярных веществ (аминокислот, производных пиридина и других) применяют полярный неподвижный растворитель — воду, который хорошо удерживается на таких гидрофильных носителях, как силикагель, порошок целлюлозы и др. Подвижной фазой в этом случае может служить насыщенный водный раствор фенола, н-бутанол и др. Если же носитель— гидрофобное вещество, то неподвижным растворителем должно быть неполярное вещество (масло, керосин, бензол, парафин), а подвижным — полярные органические вещества и вода. Разделение происходит вследствие различной растворимости компонентов в неподвижной фазе. [c.282]

    Проблема анализа распределения компонентов остатков по размерам приобрела большое значение сравнительно недавно и в основном связана с развитием процессов их каталитического гидрооблагораживашм. Возможность получать какие-то определенные результаты появилась после разработки метода гель-хроматографического разделения. Метод этот — гель-проникающая хроматография (ГПХ) — впервые нашел широкое применение в биохимии и химии полимеров [31]. При ГПХ разделение органических веществ осуществляется совсем на иных принципах, чем при других хроматографических методах. Принцип метода заключается в том, что во время прохождения раствора исследуемого вещества через колонку, заполненную частицами твердого геля, происходит разделение молекул этого вещества за счет различной способности их проникать в поры геля. Поры в частице геля имеют различный размер. Молекулы образца также различаются по величине. Некоторые молекулы слшиком велики, чтобы войти даже в самые крупные поры, и исключаются из частицы геля. Поэтому они двигаются через слой геля между его частицами и первыми выходят из колонки. Другие молекулы так малы, что входят во все поры геля, полностью проникая в частицу. Эти соединения задерживаются в наибольшей степени и появляются на хроматограмме последними. Молекулы промежуточных размеров могут входить только в некоторые поры и двигаются по колонке со средней скоростью. При разделении смеси с ширркой областью молекулярных масс используют набор гелей с разными пределами исключения. Это позволяет расширить область фракционирования колонки. Использование различных гелей дает эффект только при последовательном соединении колонок с разными гелями. При разделении соединений, мало различающихся по размеру, используют гели с узкой областью [c.36]

    Распределительная хроматография. Сорбенты-носители — различные гидрофильные (силикагель, целлюлоза и др.) или гидрофобные (тефлон, поливинилхлорид, полиэтилен и др.) порошкообразные вещества, способные удерживать на своей поверхности соответственно водную или органическую фазу разделение компонентов смеси обусловлено различием коэффициентов распределения их между двумя жидкими фазами, из которых одна (вода или органическая, несмешивающаяся с водой, жидкость) является неподвижной, удерживаемой частицами сорбента-носи-теля. [c.8]

    Если же носитель гидрофобное вещество, то неподвижным растворителем должно быть неполярное вещество (масла, керосин, бензол, парафин), а подвижным — полярные органические вещества и вода. Разделение происходит вследствие различной растворимости компонентов в неподвижной фазе. Например, для разделения высших жирных кислот применяется система, в которой сорбентом служит порошок резины, неподвижным растворителем — бензол, а подвижным растворителем — смесь метилового спирта и воды. Неподвижный [c.73]

    Двухфазная система, используемая для разделения веществ, может состоять из взаимно нерастворимых (точнее малорастворимых) жидких веществ. Одно из них обычно вода, другое — подходящее органическое вещество. В зависимости от свойств разделяемых компонентов применяют различные органические растворители, называемые экстрагентами, например, углеводороды (гексан, бензол, толуол), галогенпроизводные (тетрахлорметан или четыреххлористый углерод, трихлорметан или хлороформ, дихлорэтан), высшие спирты (пентанол), эфиры (диэтиловый эфир, бутилацетат) и др. Одни вещества остаются в водной фазе, другие извлекаются экстрагируются) в фазу органического растворителя, именуемую тогда экстрактом. [c.249]

    Во всех случаях разделяемые вещества распределяются между двумя фазами 1) твердая — жидкая (сорбция, ионный обмен), 2) твердая —газ или пар (сорбция, возгонка), 3) жидкая—газ нли пар (дистилляция, сорбция), 4) жидкая—несмешивающаяся с ней жидкость (экстракция органическим растворителем). При этом устанавливается определенное соотношение концентраций элементов в той и другой фазах ( коэффициент распределения ). Разделение компонентов основано на различии этих коэффициентов Сщ  [c.184]

    Масс-спектральный метод. Сложные газовые смеси разделяют на составные части, подвергая их действию сильных электрических и магнитных полей. Разделение происходит в соответствии с атомными или молекулярными массами отдельных компонентов смеси. Метод применяют при исследовании смесей изотопов, смесей инертных газов или сложных смесей органических веществ. [c.34]

    На стадии синтеза указанных органических веществ образуются реакционные смеси (катализат, оксидах, бражка и алкилат соответственно), содержащие конечный продукт, не прореагировавшее сырье, побочные продукты синтеза и остатки катализатора. На действующих производствах разделение этих смесей осуществляется с помощью комплекса ректификационных колонн. Так как в большинстве случаев работа аппаратов не оптимизирована, то происходят потери большого количества ценных компонентов в виде кубовых продуктов, которые являются отходами и сжигаются. [c.39]

    Особенности молекулярной дистилляции определяют область ее применения — для разделения смесей жидких органических веществ с высокой молекулярной массой, разлагающихся при температуре кипения. Нецелесообразно применять молекулярную дистилляцию в тех случаях, когда процесс разделения компонентов может быть осуществлен ири обычной дистилляции. [c.418]

    Радиоизотопная индикация может быть применена для разработки методик разделения многокомпонентных смесей не только в химическом анализе. Так, весьма трудоемкие определения состава равновесных фаз при разработке ректификационных методов разделения многокомпонентных жидких смесей значительно упрощаются, если предпринять радиометрическое определение полноты разделения компонентов. Для этого один (или несколько) компонентов разделяемой смеси метят Подходящим радиоизотопом, и затем процесс ведут до тех пор, пока радиоактивность полйостьй не сосредоточится в одной из фракций. Контроль полноты разделения будет тем более эффективным, чем выше энергия излучения изотопа, введенного для метки. Вот почему в весьма часто встречающихся случаях разделения смесей органических веществ следует по возможности метить компонент не С , обладающим весьма малой энергией излучения, а иными радиоизотопами. Например, если одним из компонентов разделяемой смеси является бромбензол, следует в качестве радиоизотопной метки выбрать Вг . [c.162]

    В сложной смеси соединений различных классов, составляющих экстрактивные вещества дерева, многие являются ценными химическими продуктами. Поэтому вьще-ление экстрактивных веществ из исходного растительного сырья и разделение их на отдельные компоненты имеют важное практическое значение. Однако задача разработки универсального растворителя для экстрактивных веществ практически неосуществима. Невозможно подобрать индивидуальный органический растворитель, который бы полностью экстрагировал все экстрактивные соединения (полярные и неполярные, органические и неорганические, низкомолекул5фные и высокомолекулярные). Смешанные органические растворители более эффективны, но и они не извлекают всю массу экстрактивных веществ. Вследствие этого применяют последовательную обработку растительного материала разными растворителями. Количество экстрагируемых фракций и их состав будут при этом определяться не только используемыми растворителями, но и последовательностью их применения. Обычно исследуемый материал с целью лучшего разделения компонентов экстрактивных веществ между отдельными фракциями обрабатывают серией растворителей с увеличивающейся полярностью, например, диэтиловый эфир, этанол, вода. Из материалов с высоким содержанием летучих веществ перед экстрагированием отгоняют с паром эти вещества. Однако из приведенной на рис. 14.2 схемы видно, что получаемые фракции имеют сложный состав. Кроме этого представители одного и того же класса соединений могут попасть в различные фракции. [c.502]

    Следовательно, разделение методом зонного осаждения зависит от различия между растворимостями компонентов, а не температурами плавления. Метод этот открывает большие возможности для разделения смесей органических веществ, учитывая, особенно, то обстоятельство, что кристалличность разделяемых веществ не оказывает существенного влияния на процесс. Возможность подбора избирательно действующих растворителей с учетом химическох природы разделяемых смесей еще больше расширяет области применения и разделяющую эффективность метода зонного осаждения. [c.29]

    Рассмотренный метод можно применить дл,ч разделения смеси органических веществ. В качестве вытеснителя применяют обычно вещество, кипящее при более высокой температуре, чем любой из компонентов смеси. Данный метод неприменим в тех случаях, когда отдельные вещества удерживаются адсорбентом настолько прочно, что их невозможно вытеснить (например, альдегиды и кислоты на активированном угле, непредельные соедт)-нения на силикагеле). [c.13]

    Распределение растворенного вещества между двумя несмеши-вающимися жидкими фазами является равновесным процессом, который можно описать при помощи закона действующих масс. Экстракционные методы разделения основаны на громадных различиях констант экстракции растворенных веществ. Экстракцию широко применяют для разделения компонентов органических систем. Так, карбоновые кислоты легко можно отделить от производных фенола экстракцией разбавленным водным раствором гидрокарбоната натрия из неводного раствора образца. Карбоновые кислоты почти полностью переходят в водную фазу, в то время как производные фенола остаются в органической фазе. [c.246]

    Основываясь на наблюдении Паара и Хэрдли [11] об избирательном растворении фенолом различных компонентов органического вещества углей, а также учитывая заводской опыт нефтеперерабатывающей промышленностц, II, И. Черножуков и А. А. Лужецкий Ц2] предложили применять этот растворитель для разделения нефтяных смол. [c.13]

    Если молекулярная масса компонентов образца превышает 2000 у. е., то метод, к которому следует обратиться, — эксклю-зионная хроматография. Для разделения смесей органических веществ в ионизированной форме и, в первую очередь, смесей неорганических анионов и катионов целесообразно применение ионной хроматографии с кондуктометрическим детектированием. [c.19]

    Хроматографический анализ органических веществ развивался попутно с хроматографией неорганических веществ. В 1935— 1936 гг. появились первые сообщения об успешном применении метода Цвета в анализе синтетических красителей. Из жидкофазных вариантов хроматографии наиболее широкое применение в органической и биологической химии получила бумажная хроматография. Это тонкий микрометод, позволяющий разделять смеси нескольких десятков компонентов на полоске пористой бумаги, которая выполняет роль хроматографической колонки. Хроматограмма получается в виде пятен, окраска которых соответствует природной окраске разделяемых компонентов смеси. При анализе бесцветных веществ пятна проявляют, опрыскивая бумагу реактивом, образующим с разделяемыми компонентами окрашенные соединения. Например, при определении аминокислотного состава белков после их гидролиза бумагу опрыскивают раствором нин-гидрина, в результате чего на поверхности бумаги появляются пятна розового цвета, соответствующие индивидуальным аминокислотам (см. рис. 1.2). Если разделяемые бесцветные вещества обладают способностью к флуоресценции, бумагу облучают ультрафиолетовыми лучами (кварцевой или ртутной лампой) и тогда хроматограмма становится видимой. Этот случай можно наблюдать при разделении смеси антрахинонов, пятна которых в ультра- [c.9]

    Структура и свойства связанного слоя определяются природой и свойствами каждого компонента в слое. Так, в случае разделения водных растворов полярных органических веществ структура связанного слоя, в отличие от структуры слоя, состоящего в основном из молекул воды, имеет дефектные участки. Это о бусловлено некомненсврован-ностью меж[молекулярных сил в участках раствора, где молекулы воды связаны с гидрофобными частями молекул растворенных веществ. Такая структура 1менее прочна, так, как водородные связи молекул оды, прилегающих к дефектным участкам, ослабляются из-за понижения донорной спо собности ОН-групп, поскольку неподеленная пара электронов этих молекул перестает служить одновременно акцептором протонов в водородной связи. [c.220]

    Современные методы спектрального анализа трудно применять к исследованию многокомпонентных систем, нефтей, нефтяных фракций, многокомпонентных полимеров. Исследования, проведенные в последние годы, позволяют выделить элекфонную феноменологическую спектроскопию (ЭФС) как перспективное направление в изучении совокупности свойств многокомпонентных органических веществ и оперативном контроле процессов химических и нефтехимических производств В отличие от обычного варианта электронной спектроскопии, в ЭФС вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных фупп или компонентов. ЭФС основана на установленны х нами закономерностях связи оптических характеристик поглощения (коэффициентов поглощения, коэффициентов отражения, цветовых характеристик и тд.) с физикохимическими свойствами системы. Разработанные на этих принципах исследовательские методы использованы в лабораторной и производственной практике. [c.224]

    Цеолиты. Цеолиты представляют собой пористые кристаллические алюмосиликаты со строго регулярной кристаллической структурой. Они использукэтся в промышленности для глубокой осушки н очистки газов и жидкостей, разделения смесей различных органических веществ, в качестве компонентов катализаторов 1341. [c.392]

    Препаративный автоматический высокотемпературный ПАХВ-02. Разработан СКВ института нефтехимического синтеза АН СССР. Может быть использован в качестве аналитического хроматографа, работающего пэ конверсионной схеме с использованием пламенно-ионизационного детектора. Предназначен для разделения хроматографическим методом смеси органических веществ и накопления заданного компонента с помощью автоматического пробоотборного устройства. Хроматографические колонки для аналитических целей — внутренний диаметр 4—Ьмм, длина 1 м, препаративные — диаметр 12—24 мм. Из отдельных секций можно собрать колонки длиной от 2 до 25 Л1. В качестве детектора используется катарометр. В комплект прибора входит интегратор для определения площадей пиков хроматограммы, записываемой самописцем ЭПП-09. Изотермический температурный режим колонок от 50 до 350° С. Рабочий объем жидкой пробы 0,1—3 мл, газовой 100 и 200 мл. Число ловушек [c.257]

    Способы отстающего электролита и опережающего электролита — во многих отношениях подобны друг другу. В обоих процессах в основе разделения растворенных компонентов лежит их различная степень сорбируемостн смолой, в обоих процессах для элюирования используют воду, и, наконец, оба процесса можно применять для разделения смесей органических и неорганических веществ. [c.114]


Смотреть страницы где упоминается термин Разделение компонентов органических веществ: [c.27]    [c.112]    [c.45]    [c.85]    [c.13]    [c.29]    [c.221]    [c.71]    [c.471]    [c.129]    [c.24]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение веществ

Разделение компонентов



© 2025 chem21.info Реклама на сайте