Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы химические содержание в земной коре

    Распространенность химических элементов в земной коре характеризуется так называемыми кларками — атомными или весовыми. Первые указывают относительное содержание (в процентах) атомов, вторые — массу элемента (в процентах). Для водорода, натрия и магния весовые кларки равны соответственно 1 2,40 2,35, а атомные — 17,25 1,82 1,72. Покажите, что между первым и вторым рядами чисел имеется соответствие. [c.26]


    ГЕОХИМИЧЕСКИЕ МЕТОДЫ ПОИСКОВ полезных ископаемых основаны на определении химического состава различных образований земной коры. Вокруг залежи полезного ископаемого в результате миграции химических элементов образуется поле повышенного содержания элементов или сопутствующих им элементов, характерных для данной руды, благодаря чему можно составить представление о самом полезном ископаемом и его местонахождении в земной коре. [c.69]

    Распространенность элементов. Распространенность элементов в природе характеризуется кларками, т. е. числами, выражающими среднее содержание химических элементов в земной коре, гидросфере, Земле, космических телах и системах. Различают массовые (в %, в г/т или г/г) и атомные (в % от числа атомов) клар-ки. Название дано в честь американского ученого Ф. У. Кларка, который впервые получил эти числа. [c.7]

    Водород — самый распространенный элемент Вселенной. Он составляет основную массу Солнца, звезд и других космических тел. В недрах звезд на определенной стадии их эволюции протекают разнообразные термоядерные реакции с участием водорода. Они и являются источником неисчислимого количества энергии, излучаемого звездами в космическое пространство. Распространенность водорода на Земле существенно иная. В свободном состоянии на Земле он встречается сравнительно редко — содержится в нефтяных и горючих газах, присут ствует в виде включений в некоторых минералах. Некоторое количество водорода появляется постоянно в атмосфере в результате разложения органических веществ микроорганизмами, но затем водород быстро перемещается в стратосферу вследствие его легкости. Основная масса водорода в земной коре находится в виде химических соединений с другими элементами большая часть его связана в форме воды, глин и углеводородов последние составляют основу нефти и входят составной частью в природные горючие газы. Кроме того, растительные и животные (организмы содержат сложные вещества, в состав которых обязательно входит водород. Общее содержание водорода составляет 0,88% массы земной коры, и по распространенности на Земле он занимает 9-е место. [c.293]

    Если сравнить химический состав Земли с составом Вселенной, то, казалось бы, между ними не должно быть существенных различий, за исключением, пожалуй, водорода, который легко уходит из атмосферы в межпланетное пространство. К сожалению, судить о составе Земли можно лишь по составам атмосферы, гидросферы и земной коры, изученной в глубину не более чем на 20 км. Главная химическая особенность этих трех сфер — необычайно высокое содержание кислорода, что объясняется уже не строением ядер его атомов, а его химическими свойствами. Атомы кислорода способны образовывать прочные химические связи с атомами многих элементов, в том числе кремния и алюминия. В процессе образования земной коры эти элементы накапливались в ней благодаря легкоплавкости их соединений со щелочами. В итоге на поверхности нашей планеты выкристаллизовалась твердая кремнекислородная оболочка. Кислород, не считая воды, входит в состав 1364 минералов. В атмосфере кислород появился около 1,8 млрд. лет назад в результате действия на минералы микроорганизмов. В настоящее время выделение кислорода растениями за счет фотосинтеза возмещает его убыль в атмосфере в ходе процессов окисления, горения, гниения, дыхания. По числу известных природных соединении (432) второе место занимает кремний. Далее по распространенности атомов в земной коре следуют алюминий, натрий, железо, кальций, магний и калий  [c.201]


    Кислород. Элемент кислород О-самый распространенный на Земле. Содержание его в земной коре составляет 55%. Свободный кислород О2 находится в воздухе (общая масса 1 10 т) и в природных водах (растворимость при 20°С равна 31 мл/1 л Н2О). Вследствие этого, а также способности соединяться с большинством химических элементов кислород определяет формы существования элементов в земной коре (минералы) и гидросфере (вода), в организмах растений и животных. Содержание кислорода в воздухе 20,95% (по объему) или 23,15% (по массе). [c.122]

    Решением вопроса о химическом составе земной коры занимались крупнейшие геохимики — Ф. Кларк, В. И. Вернадский, А. Е. Ферсман, А. П. Виноградов, супруги И. и В. Ноддак и другие. Была проделана колоссальная по объему работа. Особенно много труда потратили на определение содержания мало распространенных элементов. Так, например, чтобы доказать наличие элемента рения в земной коре и определить его среднее содержание, супруги Ноддак произвели 1600 анализов разнообразных минералов и горных пород. [c.70]

    Сравним химический состав организмов животных, растений и химический состав земной коры и морской воды. Сопоставляя данные, представленные в табл. В.2, можно сделать важный вывод, что не все самые распространенные элементы земной коры присутствуют в больших количествах в живых организмах например, кремний — один из наиболее распространенных элементов литосферы — лишь в небольших количествах содержится в некоторых видах растений, а в организме человека и высших животных он присутствует в следовых количествах. Почти 99 % атомов, входящих в состав животных и растительных организмов, являются атомами четырех основных элементов — органогенов кислорода, водорода, углерода и азота, в то время как содержание в земной коре трех последних элементов относительно мало. [c.24]

    Характер распространения элементов в земной коре сходен с характером их космической распространенности (рис. 123). В состав земной коры входят 88 химических элементов (табл. 25). Практически отсут-ствукт короткож ивущие технеций, прометий, астат, фрз1[ций и трансурановые элементы. Основными в земной коре являются восемь элементе в кислород, кремний, алюминий, натрий, железо, кальций, магн й, калий (рис. 124). Их общее содержание составляет около [c.227]

    Метеориты состоят из тех же химических элементов, что и земная кора. В них обнаружены практически все известные на Земле элементы, хотя многие из них содержатся в значительно меньших количествах. Метеориты подразделяют на два основных класса железные и каменные. Железные метеориты в основном состоят из железа и никеля каменные (хондриты) имеют химический состав, близкий к среднему составу Земли (см. табл. 6). Наиболее распространены в метеоритах такие элементы, как железо, кислород, кремний и магний, на долю которых приходится более 90% веса всех метеоритов. Содержание остальных элементов меньше, чем в земной коре и Земле в целом. Исключение составляет сера, которой в метеоритах в 2,7 раза больше, чем в Земле, и в 36 раз больше, чем в земной коре. [c.77]

    Большое внимание проблеме распространения элементов в различных естественных скоплениях вещества уделял В. И. Вернадский, который рассматривал геохимию как науку об истории атомов земного шара, как часть космической химии. Он много внимания уделил изучению химического состава земной коры, океана, природных вод, атмосферы и живого вещества. Он уточнил химический состав оболочек Земли, разделил все элементы по их распространенности в этих оболочках на десятки, установил более точное содержание некоторых редких элементов в земной коре [6]. По его инициативе в 1935 г. при Академии наук СССР была создана Комиссия по метеоритам, которая в 1939 г. была преобразована в Комитет по метеоритам. Он был председателем этого комитета до 1945 г. [c.71]

    Рассмотренные выше изотопные эффекты и свойства изотопов так или иначе связаны с различиями в их массе или параметрах ядер. Однако одна из главных и, пожалуй, наиболее известная область применения изотопов непосредственно не связана с различием в каких-либо их физических или химических характеристиках, а определяется тем, что в природных условиях распространённость того или иного изотопа является достаточно жёстко фиксированной величиной. Как показали многочисленные измерения, максимальные вариации относительного содержания изотопов в их естественной смеси не превосходят одного-двух процентов, а для многих из них и на порядок меньшей величины. Небольшие колебания природной распространённости изотопов у лёгких элементов связаны, как правило, с изотопными эффектами 1 рода и определяются незначительными изменениями изотопного состава при испарении, растворении, диффузии и т.д. У ряда элементов, содержащихся в земной коре и являющихся продуктами распада природных радиоактивных атомов, также несколько варьируется изотопный состав из-за разного содержания материнского изотопа в той или иной породе. При этом некоторые изотопы присутствуют в естественных условиях в очень малых ко- [c.32]


    В земной коре степень распространения отдельных химических эле.ментов весьма различна. Как видно из приведенных в табл. 3 данных, 99,61% земной коры состоит из соединений только 15 химических элементов кислорода, кре.мния, алю.ми-нкя, железа, кальция, натрия, магния, калия, водорода, титана, углерода,. хлора, фосфора, серы и марганца. Содержание остальных химических элементов в земной коре составляет 0,39%. Некоторые элементы, содержащиеся в земной коре в незначительных или очень малых количествах, имеют большое значение в современной технике. К таким элементам относятся, например, ртуть, бром, иод, бор, германий, индий, литий, цезий и др. [c.17]

    Природные ресурсы. Содержание в земной коре составляет Ое 5п 4-10- %, РЬ 1,0-Ю- %. Это малораспространенные элементы.. Германий, кроме того, еще сильно рассеян. Его открыли только в конце прошлого века, и он не так широко вошел в химическую практику, как олово и свинец, которые были известны задолго до новой эры. До открытия германия его свойства очень точно предсказал Д. И. Менделеев. [c.379]

    К АРКИ ЭЛЕМЕНТОВ — числа, выражающие среднее содержание химического элемента в земной кор , чаще всего в массовых процентах, иногда в граммах на тонну. Первый подсчет для десяти главнейших элементов сделан в 1889 г. У. Кларком, а в 1925—1930 гг. уточнен и дополнен В. И. Вернадским, в 1923—1932 гг. — А. Е. Ферс.аданом, давшим название кларк . К. э. уточняются и дополняются, что является заслугой ряда известных советских ученых, в частности А. П, Виноградова (1956 г.), числами которого пользуются все исследователи. [c.128]

    Существенное влияние на возможность использования запасов сырья оказывает концентрация полезного элемента. Многие элементы при относительно высоком содержании в земной коре рассеяны, что затрудняет использование их соединений в качестве химического сырья. Тем не мене для промышленности в целом и химической — в частности, характерна историческая тенденция использовать все более распространенное сырье, выраженная в правиле Вернадского, согласно которому кларки промышленности стремятся к кларкам планеты . [c.46]

    Азот принадлежит к числу достаточно распространенных химических элементов, но его содержание в различных сферах Земли колеблется в широких пределах. Так, если кларк азота (% мае.) для планеты в целом составляет 0,01, для земной коры равен 0,04, то для атмосферы он составляет 75,5. Формы существования азота в земной коре весьма разнообразны. Он входит в состав различных минералов, содержится в каменном угле, нефти и других видах ископаемого топлива. Важнейшее значение имеет азот для жизни на Земле, являясь одним из элементов, входящих в состав белковых структур, без которых невозможно существование живой клетки. На рис. 14.1 представлены формы существования азота на земле и содержание элемента в них. [c.183]

    Вследствие количественного преобладания и большой химической активности кислород предопределяет форму существования на Земле всех остальных элементов. Его значение было особенно велико в период образования земной коры. Предполагается, что содержание кислорода Б атмосфере обусловлено вторичными процессами — деятельностью зеленых растений. [c.336]

    Известность и применяемость элементов определяется не только распространенностью (т. е. величиной среднего их содержания в земной коре), но и свойствами. Некоторые элементы благодаря особенностям своих физико-химических свойств могут концентрироваться в определенных участках земной коры, образуя залежи (месторождения) мпнералов, их содержащих. В таких случаях добыча элементов облегчается, хотя его кларк (среднее содержание) может быть низким. Примером являются элементы, дающие легко летучие соединения уходя из раскаленных недр Земли и накапливаясь у земной поверхности, они образуют богатые месторождения. В частности, так обстоит дело со ртутью, которая, несмотря на низкую величину кларка (VI декада), давно известна человеку, широко используется и не считается редким элементом. В то же время другие элементы, имеющие примерно такой же, как ртуть, кларк, часто очень трудно доступны, редки, поскольку не образуют собственных месторождений в силу особенностей физикохимических свойств (например, редкоземельные элементы Но, Ег, Ти и т. д.). [c.241]

    Из 108 химических элементов, известных в настоящее время, в составе земной коры обнаружено 88. Но основными в земной коре являются восемь элементов кислород, кремний, алюминий, натрий, железо, кальций, магний и калий. Суммарное содержание этих элементов составляет 98,5 масс, доли, %. Менее распространены титан, фосфор, водород и марганец. Их общее содержание в земной коре равно примерно 1 масс, доли, %. Следовательно масс, доля остальных 76 химических элементов менее 0,6%. [c.244]

    Кларки элементов — числовые оценки среднего содержания химических элементов в земной коре, атмосфере, гидросфере, космическ1х объектах и т. и. Выражаются в единицах массы. Термин введен А. Е. Ферсманом в честь американского геохимика Ф. У. Кларка (1847—1937). [c.431]

    Большой вклад в становление и развитие геохимии науки о химическом составе, закономерностях распространения и распределения элементов и их соединений на Земле — внесли В. И. Вернадский, А. П. Виноградов, В. Гольдшмидт и др. По предложению А. Е. Ферсмана числа, показывающие среднее содержание какого-либо химического элемента в природе, называются кларками в честь ученого, сделавшего первый расчет (1889) распространенности химических элементов в земной коре. Кларки могут быть выражены либо в атомных долях (%), показывающих долю (%) числа атомов данного элемента от общего числа атомов имеющихся элементов, либо в массовых долях (%), показывающих, какая доля. (%) приходится на данный элемент от общей массы рассматриваемой природной системы. Эти показатели связаны отношением массовой доли к атомной, равным Аг. 20, где Аг — относительная атомная масса данного элемента, а 20 — усредненная масса атомов земной коры. [c.201]

    Элементы подгруппы цинка в природе. Получение и применение. Цинк и кадмий вследствие их значительной химической активности встречаются в природе только в виде соединений, причем содержание цинка и земной коре [1,1 10- % (масс.)] намного превышает содержание кадмия [1,5-Ю- % (масс.)]. Содержание ])тути в природе, как и кадмия, невелико — 0,8 X [c.430]

    Список элементов и их атомные веса приведены в п. 2. В п. 3 дано содержание химических элементов в земной коре. Электронные структуры элементов помещены в п. 4. Энергия отрыва или присоединения электронов указана в п. 5, ионные радиусы —в п. 6. [c.3]

    Наиболее достоверные данные о химическом составе земной коры остносятся к ее континентальной части. Они приведены в табл. 5 по данным различных авторов, начиная с Ф. Кларка и кончая последними обобщающими работами. Сравнение данных разных авторов показывает сходство в оценке состава континентальной коры. Такие компоненты, как 31 02 и АЬОз, имеют у разных авторов практически одинаковое значение содержания. Таким образом, химический состав континентальной земной коры известен в настоящее время достаточно хорошо. Можно считать, что чем более распространен элемент (компонент), тем более достоверны данные о его относительном содержании в природной системе. [c.15]

    Химический состав подземных вод весьма разнообразен. По количественному составу, обусловленному содержанием главных минеральных компонентов (макрокомпонентов), диапазон минерализации подземных вод колеблется от ультрапресных (20— 30 мг л) до насыщенных рассолов, содержащих хлористый кальций и хлористый магний (до 600—700 г л). Подземные воды, особенно шахтные, как правило, содержат большие количества железа, алюминия, марганца, меди, цинка, никеля, кобальта, молибдена и др. Контактируя с различными породами и рудами, подземные воды обогащаются практически всеми элементами, которые содержатся в земной коре. Можно с достаточной уверенностью говорить, что нет подземной воды, которая не содержала бы все или почти все элементы, встречающиеся в земной коре. Содержание многих микрокомпонентов настолько мало, что определить их пока не удается. [c.46]

    Распространение и добыча алюминия. По распрострапеи-ности в земной коре алюминий занимает первое место среди металлов и третье место (после кислорода и кремния) среди всех элементов — его содержание в земной коре составляет 8,45%. Вследствие высокой химической активности алюминий встречается в кркроде только в виде соединений. Насчитывается более 250 минералов, содержащих алюминий. Почти половина пз иих — алюмосиликаты. [c.256]

    Самый распространенный в природе переходный металл — железо Ке, элемент побочной подгруппы VIII группы периодической системы химических элементов Д. И. Менделеева. Атомный номер его 26, относительная атомная масса 55,847. Чистое железо — блестящий серебристо-белый металл. Железо — один из наиболее распространенных элементов в природе, по содержанию в земной коре (4,65% по массе) уступает лишь кислороду, кремнию и алюминию. Оно входит в состав многих оксидных руд — гематита, или красного железняка Гв20з, магнетита Гез04 и др. [c.156]

    В начале столетия вещество считалось чистым, если оно содержало меньше 0,1% примосей. Ни науке, ни практике (за редким исключением) еще не были нужны особо чистые вещества. Даже в тридцатых годах нашего сто-ления проблема чистоты веществ не стояла особенно остро. Содержание примесей порядка 1 млн.- в то время представляло интерес только для геохимиков, оперирующих такими числами при описании распределения химических элементов в земной коре. Металлурги считали вещество достаточно чистым, если в нем содержалось не более чем 0,01 % примесей. [c.411]

    УГЛЕРОД ( arboneum. лат. сагЬо — уголь) С — элемент IV группы 2-го периода периодической системы элементов Д. И. Менделеева, п. н. 6, ат. м. 12, 011. Имеет два стабильных изотопа i (98,9%) и 1 С(1,1%), известны шесть радиоак-Т.1ВНЫХ изотопов. По решению Международного съезда химиков (1961 г.), Via массы изотопа i принята за единицу атомной массы. У. в виде древесного угля применялся в глубокой древносги для выплавки металлов. У. как химический элемент впервые получен Теннантом в 1797 г. Общее содержание У. в земной коре достигает 0,10 мае. %. Основная масса его находится в земной коре в связанном состоянии. Важнейшими минералами У. являются природные карбонаты, количество У. в которых составляет 9,6 101 т. В свободном со- [c.255]


Смотреть страницы где упоминается термин Элементы химические содержание в земной коре: [c.272]    [c.18]    [c.47]    [c.95]    [c.151]    [c.169]    [c.258]    [c.271]    [c.238]    [c.267]    [c.325]    [c.402]    [c.426]    [c.339]    [c.416]   
Современная общая химия Том 3 (1975) -- [ c.2 ]

Современная общая химия (1975) -- [ c.2 , c.11 ]




ПОИСК





Смотрите так же термины и статьи:

Кора

Корей

СОДЕРЖАНИЕ Элементы

Среднее содержание химических элементов в земной коре

Элемент химический



© 2025 chem21.info Реклама на сайте