Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий радиоактивность

    Среди других сырьевых-источников рубидия радиоактивные растворы наиболее богаты по содержанию рубидия (до 0,15 г/л) и не нуждаются в предварительном химическом концентрировании. [c.131]

    Селективное выделение рубидия из радиоактивных растворов представляет самостоятельный практический интерес из-за стабильности его изотопов. Из всех известных сырьевых источников рубидия радиоактивные растворы являются наиболее богатыми (содержание рубидия достигает 0,15 з/л), не требующими какого-либо предварительного химического концентрирования. [c.320]


    Но ведь радиоактивность — удел элементов конца периодической системы, а шестьдесят первый располагается почти в середине ее. Правда, для двух эл, ентов среднего атомного веса, а именно для калия и рубидия, доказано проявление радиоактивности, так почему же не допустить такой возможности и для иллиния Однако есть но , и весьма существенное. Из нескольких изотопов у калия и рубидия радиоактивны лишь два, по одному на каждый элемент. Периоды же полураспада радиоактивных калия и рубидия астрономически велики, они измеряются десятками миллиардов лет. [c.166]

    Изотоп Rb имеет период полураспада 5 10 лет и составляет 27,95% от земного рубидия. Радиоактивность Rb, превращающегося в Sr, [c.131]

    Рубидий и цезий содержатся в минералах калия. Франций радиоактивен, стабильных изотопов не имеет. Он открыт в 1939 г. в продуктах радиоактивного распада урана (4 10 г на 1 г природного [c.490]

    Радиоактивные изотопы калия дК и рубидия претерпевают Р -распад. Написать уравнения ядерных реакций. [c.66]

    Калий и рубидий слабо радиоактивны, их изотопы претерпевают превращения 1эК + -> [аАг "Ь V (происходит захват ядром Таблица ЗА. Некоторые свойства щелочных металлов [c.299]

    Рубидий и цезий содержатся в минералах калия. Франций радиоактивен, стабильных изотопов не имеет. Он открыт в 1939 г. в продуктах радиоактивного распада урана (4-10 г на 1 г природного урана). Его получают искусственно. Наиболее долгоживущий изотоп Тг (Ti/ =20 мин) образуется при облучении урана протонами  [c.593]

    В природе щелочные металлы находятся в виде хлоридов, сложных алюмосиликатов, сульфатов и в других соединениях. Наиболее распространенным элементом является натрий. Рубидий и цезий содержатся в минералах калия. Калий и рубидий слабо радиоактивны. Франций — радиоактивный элемент, не имеет долгоживущих изотопов. [c.251]

    Калий и рубидий имеют природные радиоактивные изотопы к и периоды полураспада составляют соответственно 1,32-10 и 4,8-10 ° лет. Эти изотопы претерпевают превращения  [c.320]

    Подгруппу лития составляют следующие элементы литий (Ы), натрий (N3), калий (К), рубидий (КЬ), цезий (Сз) и радиоактивный, искусственно полученный франций (Рг). Все они являются металлами высокой активности объединяются под общим названием щелоч- [c.48]

    Элементы литий Ы, натрий Ма, калий К, рубидий КЬ, цезий Сз и франций Рг составляют 1А группу Периодической системы Д. И. Менделеева. Франций — радиоактивный элемент, его наиболее долгоживущий изотоп з зрг имеет период полураспада, равный 22 мин. Групповое название элементов 1А 1 руппы — щелочные металлы. [c.195]

    При переходе от К к Rb происходит смена строения ядра наиболее стабильного изотопа плеяды. В отличие от калия самый распространенный изотоп у рубидия ( Rb) имеет тип ядра по массе 4п+1 (а не 4п + 3). Изотоп же Rb(4n + 3) имеет слабую радиоактивность — ядра такого типа у элементов второй половины периодической системы нестабильны. [c.9]


    Извлекают рубидий из отработанного электролита методом, предложенным И. В. Тананаевым и сотр. [121, 125, 127, 128] и позднее примененным другими авторами для выделения цезия из радиоактивных отходов [10]. Метод основан на способности осадков, содержащих смесь ферроцианида железа (берлинская лазурь) и ферроцианида никеля, извлекать из растворов незначительное количество рубидия и цезия. [c.129]

    Перед осаждением рубидия и цезия радиоактивные растворы предварительно концентрируют либо упариванием в вакууме, либо упариванием с добавлением формальдегида для разрушения НЫОз [10]  [c.132]

    В технологии извлечения цезия и рубидия из сбросных растворов, остающихся после экстракционного извлечения урана и плутония, надо учитывать высокую радиоактивность водной фазы. Поэтому реальные схемы переработки радиоактивных растворов должны быть максимально просты, а аппаратура процессов — надежна в эксплуатации в условиях сильного облучения. Среди рассмотренных выше методов промышленного выделения цезия и рубидия из радиоактивных растворов необходимым условиям больше других отвечают экстракционный и ферроцианидный [10]. [c.137]

    Ферроцианидный метод [230] во многом напоминает описанный выше для извлечения рубидия и цезия из карналлита и радиоактивных отходов. Во всех вариантах рубидий и цезий осаждают в виде смешанных ферроцианидов кальция или магния. [c.138]

    При переработке поллуцита, литиевых и калиевых минералов, радиоактивных отходов и других сырьевых источников получают рубидиево-цезиевые, цезиево-рубидиевые и рубидиево-калиевые концентраты в виде квасцов, хлоридов, сульфатов, карбонатов и других солей. Такие концентраты содержат примеси К, На, Mg. Са, 81, А1, Ре, Сг, Т1 и других элементов. Из них калий наиболее близок по химическим свойствам к рубидию и цезию, поэтому их разделение (особенно пары калий — рубидий) — самая трудная проблема в технологии получения чистых солей рубидия и цезия. В связи с этим в дальнейшем будут в основном рассмотрены методы, связанные с решением упомянутой проблемы, а также возможность удаления других примесей. [c.138]

    Последнее время усиленно изучается обменная сорбция К , Rb" и s на ионитах минерального происхождения, таких, как цеолиты, анальцим фосфат, молибдат и вольфрамат циркония. В ряде случаев было показано, что калий, рубидий и цезий лучше разделяются на минеральных ионитах, чем на органических. Минеральные иониты благодаря своему регулярному и относительно жесткому каркасу обладают по сравнению со смолами более высокой селективностью к отдельным щелочным металлам, превосходят органические иониты по устойчивости н действию высокой температуры и радиоактивного излучения. К сожалению, минеральные иониты не отличаются достаточной химической стойкостью и часто склонны к пептизации, что, естественно, ограничивает область их применения. [c.145]

    Радиоактивные изотопы калия и рубидия "РЬ претерпевают р--распад. Написать уравнения ядерных реакций. [c.223]

    Калий и рубидий слабо радиоактивны и испускают р-лучи. В какие элементы они при этом превращаются  [c.182]

    Описано определение калия и рубидия, одновременно присутствующих в исследуемом объекте, при помощи искусственных радиоактивных изотопов К и Rb [405]. Исследование потерь при количественном определении калия производилось радиохимическим методом с применением изотопа [1870] Этот же изотоп используется для изучения распределения калия на бумажных хроматограммах [1278] и ионообменных колонках [980] [c.112]

    Технология лития, рубидия и цезия рассмотрена применительно к переработке всех важнейших типов минерального сырья, включая проблему переработки радиоактивных отходов и галургическую проблему переработки рапы соляных озер и рассолов морского типа. Описаны методы получения металлических лития, рубидия и цезия и их соединений различной степени чистоты. [c.2]

    Для извлечения цезия и рубидия радиоактивный раствор пропускают через глауконитовую колонку, которую затем промывают 0,1 и. раствором (ЫН гСОз для удаления основной части солей калия и натрия. После этого цезий и рубидий десорбируют 1—2 н. раствором (N1 4)2003. Отработанный десорбент упаривают, интенсивно перемешивая его воздухом. После удаления ЫНз и СО2 обрабатывают его ферроцианидом никеля для связывания цезия и рубидия [2161. Глауконитовую колонку вновь используют для сорбции цезия. [c.134]

    Для извлечения цезид и рубидия радиоактивный раствор с рН = 2,7—13,0 пропускают через глауконитовую колонку, которую затем промывают 0,1 н раствором карбоната аммония для удаления основной части солей калия н натрия, после чего цезий и рубидий десорбируют 1—2 н. раствором карбоната аммония. Отработанный десорбент (раствор карбоната аммония) упаривают при 70—80° С при интенсивном перемешивании воздухом и после удаления NH3 и СО2 обрабатывают ферроцианидом никеля для связывания цезия и рубидия [287]. Глауконитовая колонка может быть затем снова использована для сорбции цезия. [c.333]


    Следует заметить также, что степень опасности радионуклидов зависит не только от характеристики радиоактивного излучения, но и от их способности накапливаться в живых организмах. Быстрее всего из организма выводятся висмут, родий, бром, серебро, кобальт, №1трий, углерод (пфиод полувыведения от 1 до 10 суток). Для теллура, цезия, бария, меди, рубидия, серы, хлора, калия, скандия, магния и сурьмы эта величина составляет от 10 до 100 суток, а для железа, хрома, цинка, мьппьяка, урана, тория, редкоземельных элементов, бериллия, фтора, фосфора - ог 100 до 1000 суток. Период полувьшедения свинца, радия, нептуния, плутония, америция и кальция превьппает 1000 суток [184]. [c.101]

    РУБИДИЙ (Rubidium, название от характерных линий спектра, лат. rubidus — темно-красный) Rb — химический элемент I группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 37, ат. м. 85,4678. Природный Р. состоит из двух изотопов, один из которых радиоактивен. Известны 16 искусственных радиоактивных изотонон. Р. открыт в 1861 г. Р. Бунзеном и Г. Кирхгофом спектральным анализом минеральных вод. Получают Р. вместе с цезием из карналлита и лепидолита. Самостоятельных минералов не имеет. Р.— мягкий серебристо-белый металл, химически активен, самовоспламеняется на воздухе, с водой и кислотами взаимодействует со взрывом. В соединениях Р. одновалентен. Среди солей Р. важнейшие галогениды, сульфат, карбонат и некоторые др. Р. применяют для изготовления фотоэлементов, газосветных трубок, сплавов, в которых Р. является газопоглотителем, для удаления следов воздуха из вакуумных ламп соединения Р. применяют в медицине, в аналитической химии и др. [c.216]

    Натрий и калий широко распространены в природе, а литий, рубидий и цезий-редкие элементы. Литий содержится в нескольких силикатных минералах, а рубидий и цезий-спутники калия в соляных пластах, минералах и в воде минеральных источников. Франций - радиоактивный элемент, его наиболее долгоживуший изотоп имеет [c.165]

    Ядра атомов элементов 1А-группы характеризуются нечетными величинами заряда, а потому число устойчивых изотопов у них невелико (табл. 1). Натрий и цезий — моноизотопные элементы у лития и калия в природной смеси по два устойчивых изотопа. Среди природных изотопов калия и рубидия имеется по одному радиоактивному изотопу с относительно большими периодами полураспада (1,32 х X 10 и 5-10 лет). У франция устойчивых изотопов нет в настоящее время известны 8 радиоактивных изотопов его с малыми периодами полураспада. Наиболее устойчивым из них является изотоп 8fFг Т /2=2 мин), который впервые был выделен в 1939 г. [c.34]

    Характеристика. Металлы литий Ы, натрий N8, калий К, рубидий КЬ, цезий Сз и искусственно полученный радиоактивный франций Гг (период полураспада равен 20 мин), образующие 1А-группу, называются щелочными, так как их оксиды общей формулы МвзО имеют сильноосновныч характер, и образуемые ими гидроксиды (МеОН) являются сильными электролитами — щелочами. [c.397]

    Извлечение рубидия и цезия из радиоактивных отходов. В связи с развитием ядерной энергетики переработка радиоактивных отходов энергетических реакторов превратилась в серьезную проблему. Появилось много исследований по выделению ряда элементов из растворов низких концентраций, что объясняется как необходимостью очистки сточных вод от продуктов деления перед сбросом, так и самостоятельным интересом к получению некоторых соединений и препаратов. Примером может служить получение у-источников, главным образом на основе s-137, которые используются в различных отраслях народного хозяйства [10]. Среди радиоактивных отходов s-137 — долгоживущий радиоактивный изотоп — занимает особое место. Он выделяется при реакции деления в относительно большом количестве и определяет активность продуктов деления после длительного периода их охлаждения . Поэтому выделение цезпя (и стронция) из радиоактивных отходов — решающий вопрос для безопасности длительного хранения отходов. Селективное выделение рубидия из радиоактивных растворов представляет практический интерес из-за стабильности его изотопов - [c.131]

    Для удаления продуктов деления из урановых стержней последние растворяют в HNO3. Кислый раствор уранилнитрата U02(N03)2 после добавления NaNOa экстрагируют, например, трибутилфосфа-том (ТБФ) в непрерывном противоточном экстракторе (пурекс-про-цесс). Все радиоактивные отходы, в том числе цезий и рубидий, кон- [c.131]

    Известно шесть методов промышленного выделения цезия и рубидия из радиоактивных отходов. На некоторых зарубежных заводах (например, на заводе Окриджской национальной лаборатории, США) применяют метод соосаждения цезия с алюмо-аммонийными квасцами [10, 211, 213]. При этом радиоактивный раствор первоначально нейтрализуют аммиаком до pH 2—3 для почти полного (90—99%) соосаждения с Ре(ОН)з примесей Ва, La, Се, V, Ru, Тс, Со и др. Затем 50%-ным раствором NaOH, содержащим соду, выделяют основную массу щелочноземельных, редкоземельных металлов и Na2U207. В фильтрате, подкисленном и нагретом до 90°, растворяют алюмо-аммонийные квасцы до достижения их концентрации 240 г/л. После охлаждения раствора до 4—25° квасцы отделяют (извлечение цезия до 90°) и два-три раза перекристаллизовывают. Полученные таким образом [c.132]

    Ацидогалогенидный метод. Выделение ацидогалогенидных соединений цезия и рубидия из радиоактивных растворов основывается на присутствии в последних значительного количества Мо, Те, Ru, при определенном сочетании которых могут образоваться малорастворимые соли этого типа. Вместе с рубидием и цезием из растворов будут выделяться и другие ценные элементы. [c.133]

    Ионообменный метод. Реализация ионообменного процесса применительно к извлечению цезия и рубидия из радиоактивных растворов сопряжена с большими трудностями, так как адсорбцию малых количеств цезия и рубидия приходится проводить из растворов с большой интенсивностью ионизирующего излучения и высокой концентрацией посторонних солей. Следовательно, сорбенты должны быть максимально селективны и устойчивы к радиолизу. На практике испытаны ионообменные смолы, природные и синтетические минеральные гели, активные угли. При этом выявлены преимущества природных алюмосиликатов (глаукониты, монтмориллониты) и фосфатов циркония [216, 217]. Оказалось [2161, что цезий и рубидий лучше других катионов сорбируются на глауконите — железоалюмосиликате, сцемен- [c.133]

    Первый путь основан на связывании ионов рубидия и цезия в нейтральные, крупные, гидрофобные молекулы с небольшой степенью ионизации (дипикриламинаты, полииодиодааты, тетраиодвисмутаты, тетрафенилбораты, гексафторофосфаты и другие соединения, легко извлекаемые полярными органическими растворителями из водной фазы). Этот путь уже нашел промышленное применение при извлечении рубидия и цезия из радиоактивных растворов (см. выше). Основной его недостаток с увеличением кислотности и концентрации щелочных металлов в водном растворе меньше извлекается рубидия и цезия. [c.146]

    Отклонения от закона постоянства изотопного состава в большинстве случаев легко пояснимы. Одна из причин отклонения — радиоактивный распад естественных радиоактивных элементов и ядерные реакции, вызываемые элементарными частицами, выделяющимися при этом распаде. Так, например, в различных свинцовых месторождениях преобладает либо РЬ , либо РЬ . Дело в том, что свинец является конечным продуктом радиоактивного распада двух естественных радиоактивных элементов урана и тория, Урановый свинец имеет массовое число 206, ториевый — 208. Стронций, выделенный из слюды, которая содержит рубидий, на 100% состоит из изотопа с массой 87. В то же время содержание во всех прочих природных соединениях этого элемента немногим больше 7%. Причина этой аномалии — в естественйой радиоактивности НЬ , Выбрасывая р-частицу, последний превращается в 5г . [c.24]

    Щелочноземельные металлы — химические элементы главной подгруппы II группы периодич, системы Д. И. Менделеева кальций Са, стронций Sr, барий Ва и радий Ra. Происхождение названия связано с тем, что оксиды этих металлов (по терминологии алхимиков — земли ) сообщают воде шелочную реакцию активны. Щелочные металлы —элементы главной подгруппы 1 группы периодич, системы Д. И, Менделеева литий Li, натрий Na, калий К, рубидий Rb, цезий s и радиоактивный элементфранцнйГг. Названы щелочными потому, что их гидроксиды МеОН самые сильные основания (щелочи). Щ. м.—химически активные элементы (активность возрастает от Li к Fr). [c.155]


Смотреть страницы где упоминается термин Рубидий радиоактивность: [c.118]    [c.286]    [c.132]    [c.525]    [c.114]    [c.308]   
Курс неорганической химии (1972) -- [ c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий



© 2025 chem21.info Реклама на сайте