Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиоактивные изотопы искусственное получение

    Изотопы находят широкое применение в научных исследованиях, где они используются как меченые атомы для выяснения механизма химических и, в частности, биохимических, процессов. Для этих целей необходимы значительные количества изотопов. Стабильные изотопы получают выделением из природных элементов, а радиоактивные в большинстве случаев с помощью ядерных реакций, которые осуществляются искусственно в результате действия на подходящие элементы нейтронного излучения ядерных реакторов или мощных потоков частиц с высокими энергиями, например дейтронов (ядер дейтерия й), создаваемых ускорителями. Один и тот же изотоп можно получить различными путями. Так, например, для получения радиоактивных изотопов водорода, углерода, фосфора и серы, наиболее широко используемых в практике биологических исследований, осуществляются следующие ядерные реакции  [c.26]


    Методы выделения и концентрирования радиоактивных изотопов. При получении искусственных радиоактивных изотопов облучением мишеней или делением урана и других тяжелых элементов всегда приходится проводить отделение требуемого радиоактивного изотопа от других сопутствующих элементов. Особенно это бывает важным тогда, когда сопутствующие элементы также радиоактивны. [c.93]

    Элементы главной подгруппы шестой группы периодической системы — это кислород, сера, селен, теллур и полоний. Последний из них — радиоактивный металл известны как природные, так и искусственно полученные его изотопы. [c.452]

    Фредериком и Ирен Жолио-Кюри (1934) было открыто явление искусственной радиоактивности. Было получено весьма большое число новых изотопов, причем все они оказались радиоактивными. Благодаря этому в настоящее время общее число известных изотопов разных элементов очень сильно возросло. Так, если в природных соединениях встречается всего примерно 280 изотопов разных элементов, то с искусственно полученными это число возросло почти до 1400 и продолжает расти с каждым годом в связи с получением все новых изотопов. [c.50]

    Общее число радиоактивных изотопов, искусственно полученных с помощью тех или других ядерных реакций, в настоящее время превышает 1200 и возрастает с каждым годом (общее число изотопов, встречающихся в природных условиях, для всех элементов составляет примерно 280). [c.457]

    Помимо получения около 1000 радиоактивных изотопов искусственными ядерными реакциями, с помощью последних были синтезированы недостающие элементы периодической системы с 2 = 43, 61, 85 и 87. С помощью ядерных реакций химия вышла за пределы последнего элемента — урана искусственно получены элементы с порядковыми номерами 93—104. На крупнейших заводских установках разделяются изотопы урана, в атомных реакторах получаются относительно большие количества плутония. Ядерная техника получения элементов с каждым годом расширяет сферу своего практического применения. [c.61]

    Элемент 106 (названия и символа пока не имеет) — радиоактивный элемент, искусственно полученный впервые в 1974 г. в лаборатории Объединенного института ядерных исследований (г. Дубна, СССР) изотоп с массовым числом 263 имеет период полураспада, равный 0,9 с. [c.414]

    Элемент 107 (названия и символа пока не имеет)радиоактивный элемент, искусственно полученный впервые в 1975 г. в лаборатории Объединенного института ядерных исследований (г. Дубна. СССР). Изотоп элемента 107 с массовым числом 261 образуется при бомбардировке ядер висмута-209 ядрами хрома-54  [c.419]


    Последним рассмотрим образование радиоактивного изотопа серы и на этом ограничим приведение примеров. Обычная сера со-, стоит из четырех стабильных изотопов с массовым чис.яом 32, 33 34 и 36, Получены три радиоактивных изотопа искусственно, причем два из них имеют периоды полураспада 3—5 секунд и, следовательно, практического значения не имеют. И только один изотоп Sie оказался практически пригодным. Его период полураспада 87,1 дней. Один из способов его получения — бомбардировка хлора нейтро- [c.53]

    При р-распаде массовое число изотопа не меняется, а при а-распаде уменьшается на 4.. Поэтому возможно существование четырех радиоактивных рядов один из них включает изотопы, массовые числа которых выражаются общей формулой 4/г (п — целое число), второму отвечает общая формула массового числа-4п + 1. третьему — 4п4-2 (это и есть радиоактивный ряд урана) и четвертому — 4 + 3. Действительно, помимо ряда урана, известны еще два естественных радиоактивных ряда ряд тория, начинающийся с изотопа 23214 и соответствующий общей формуле массового числа 4л, и ряд актиния, начинающийся с изотопа ( актиноуран ) и отвечающий общей формуле массового числа 4п + 3. Устойчивые продукты превращений в этих рядах тоже представляют собой изотопы свинца ( ° РЬ и РЬ). Родоначальником четвертого радиоактивного ряда (ряда нептуния) с общей формулой массового числа 4п +1 служит изотоп искусственно полученного элемента нептуния Np здесь конечным продуктом распада является устойчивый изотоп висмута [c.106]

    Радиоактивными оказались все изотопы искусственно полученных элементов с порядковыми номерами 43, 61, 85 и 87 (технеция, прометия, астатина и франция). Указанные элементы пока еще не обнаружены в природе. [c.25]

    Изучение закономерностей ядерных превращений имеет решающее начение для установления свойств ядер, природы ядерных сил и создания теории строения ядра. Изучение ядерных реакций имеет п большую практическую ценность. Это прежде всего использование ядерной энергии в практических целях, искусственное получение новых химических элементов, разнообразных радиоактивных изотопов и пр. Развитие техники ускорения частиц впервые позволило воссоздавать в лаборатории процессы, приближающиеся к происходящим и земной коре и космическом пространстве, что дает возможность представить генезис химических элементов в природе. [c.662]

    Кроме того, в качестве излучений высокой энергии можно использовать протоны, дейтоны, а-частицы, ускоренные в специальных ускорителях (циклотрон, генератор Ван-де-Граафа). Пучки быстрых электронов можно получать, используя линейные ускорители, бетатроны или радиоактивные изотопы некоторых элементов (например, " Зг, Сз и др.). Источником квантов больших энергий, кроме уже указанных искусственно получаемых радиоактивных элементов, могут служить мощные рентгеновские трубки для получения у-излучений можно также использовать торможение быстрых электронов, полученных в ускорителях (бетатроне, линейном ускорителе электронов, генераторе Ван-де-Граафа). Источниками нейтронов, кроме атомных реакторов, могут быть радио-бериллиевые и полоний-берил-лиевые источники или специальные ускорители нейтронов. [c.258]

    Этот вид радиоактивного превращения наблюдается у некоторых искусственно полученных радиоактивных изотопов. [c.93]

    Искусственно получен ряд радиоактивных изотопов углерода, из которых отметим два С (т = 20,5 мин) и С (Тп = 5600 лет). [c.433]

    КЮРИЙ ( urium, назван в честь П. Кюри и М. Склодовской-Кюри) m — химический элемент, п. н. 96, относится к семейству актиноидов. К. искусственно получен в 1944 г. Сиборгом, Джеймсом и Гиорсо (США). Известно 13 радиоактивных изотопов. Массовое число самого стойкого изотопа 247 (период полураспада 4 10 лет . Несколько миллиграммов К. получено восстановлением СтРз барием. Металлический К. имеет т. пл. 1300° С. В соединениях К. трехвалентен, по свойствам является аналогом гадолиния. [c.143]

    Другой способ получения искусственного радиоактивного изотопа P — это облучение серы 15 25 нейтронами в ядерном реакторе. Здесь происходит реакция типа (п, р) 1б 5(м, р) 15 2Р- [c.219]

    В настоящее время Ка из урановых руд в промышленном масштабе не выделяют, он слишком дорог, на практике его успешно заменяют искусственно полученными радиоактивными изотопами. [c.225]

    Поступая аналогичным образом, другие авторы, работавшие над искусственным получением радиоактивных изотопов, могли доказать химическим путем правильность предложенных ими ядерных реакций. [c.64]

    При бомбардировке висмута получается радиоактивный изотоп, который также образуется в природе в результате радиоактивного распада урана и был известен под названием RaE (см. табл. 19). Так же, как и RaE, он радиоактивен и распадается с выбрасыванием электронов (Р -распад) и время его полураспада такое же — 5,013 суток. Это первый пример искусственного получения радиоактивного вещества, имеющегося в природе. [c.66]


    Наиболее важным элементом данного гомологического ряда является марганец. Рений представляет собой сравнительно редкий элемент. Технеций получен искусственным путем с помощью ядерных реакций. В настоящее время известны 15 его радиоактивных изотопов, но все, кроме трех, имеют небольшой период полураспада. [c.335]

    Для искусственного получения технеция пользуются мишенью из молибдена ( Мо), которая подвергается бомбардировке нейтронами. Вначале получается Р -радиоактивный изотоп Мо, который превращается в технеций. Процесс в целом может быть выражен схемой  [c.344]

    Радон (Z = 86) не имеет стабильных, т. е. не испытывающих, радиоактивного распада, изотопов. Наиболее устойчивы его атомы с массовым числом 222, среднее время жизни которых составляет 5,5 суток. Аналогичные радону-222 естественные радиоактивные изотопы сравнительно немногочисленны, но искусственное их получение возможно для всех элементов. Примерами могут служить атомы "С и " С, средняя продолжительность жизни которых составляет соответственно 30 мин и 8,5 тыс. лет. Подобные радиоактивные изотопы ( радиоизотопы ) находят широкое использование при различных научных исследованиях и в технике. [c.77]

    Кислород имеет три стабильных изотопа, встречающихся в природных соединениях этого элемента 0 — 99,759%, Ю — 0.0374 /о и — 0,2039%. Известны также радиоактивные изотопы, полученные искусственно, О, О, и 0 — с периодами полураспада 76,5 с, 2,1 мин и 29,5 с соответственно. [c.184]

    Искусственное получение радиоактивных изотопов позволяет использовать метод радиоактивных индикаторов, или меченых атомов, для исследования физико-химических процессов с участием любого химического элемента. [c.592]

    Известны радиоактивные изотопы, полученные искусственным путем. [c.11]

    Потоки очень быстрых нейтронов, получаемые с помощью циклотрона, дают возможность получать искусственные изотопы и других элементов. Обычно процесс протекает в этом случае по следующей схеме нейтрон поглощается ядром атома с образованием изотопа, обладающего массой, на единицу большей этот вновь образовавшийся изотоп претерпевает с гой или иной скоростью дальнейшее превращение, боль1цей частью с выделением -лучей. Так получается, например, искусственный радиоактивный изотоп натрия цМа , период полураспада которого т = 14,8 часа. -Общее число радиоактивных изотопов, искусственно полученных в настоящее время, достигает 600 и возрастает с каждым годом (общее число изотопов, встречающихся в природных условиях, для всех элементов составляет примерно 280). [c.416]

    Нкльсборий Ns - радиоактивный элемент, искусственно полученный с помощью ялерных реакций. Известно несколько изотопов этого элемента, из них наиболее долгоживущий с периодом полураспада 34 с. [c.497]

    Элементы хром (Сг), молибден (Мо) и вольфрам (W) составляют побочную подгруппу шестой группы. Элемент № 106 (названия и символа пока не имеет), KOTopHit также находится в побочной подгруппе VI группы,— радиоактивный элемент, искусственно полученный впервые в 1974 г. в лаборатории Объединенного института ядерных исследований (г. Дубна, Россия) изотоп с массовым числом 263 имеет период полураспада, равный [c.315]

    К четвертому — 4п 4-3, Действительно, помимо ряда урана, известны еще два естественных радиоактпв ых ряда р.чд торпя, начинающийся с изотопа jj соответствующий общей форму.1е массового числа 4п, и ряд актиния, начинающийся с изотопа ( актиноуран ) и отвечающий общей формуле массового числа Ап 3. Устойчивые продукты превращений в этих рядах тоже представляют собой изотопы свинца и -° РЬ). Родоначальником четвертого радиоактивного ряда (ряда нептуния) с общей формулой массового числа 4л-f- служи.т изотоп искусственно полученного элемента нептуни.я здесь конечным продуктом распада является устойчивый изотоп висмута [c.105]

    БЕРКЛИЙ (ВегкеПит, происходит от названия г. Беркли в Калифорнии). Вк — искусственно полученный радиоактивный элемент семейства актиноидов, п. н. 97, массовое число наиболее долгоживущего изотопа 247. Б. открыт в 1949 г. Сиборгом и др. В соединениях Б. бывает трех- и четырехвалентным. Самый долгоживущий изотоп Вк, период полураспада его 7. 10 лет. В трехвалентном состоянии Б. по химическим свойствам напоминает кюрий. [c.43]

    Третий (радиоактивный) изотоп № был получен искусственно по- редством бомбардировки дейтерия дейтонами (дейтон — ядро дейтерия)  [c.269]

    Явление изотопии было открыто в 1909 г. при изучении природных радиоактивных элементов. Позднее, в результате разработки метода, дающего возможность определять массы отдельных видов атомов (метод масс-спектрографии), явление изотопии было otкpытo (Астон, 1920 г.) >и у природных соединений нерадиоактивных элементов. С развитием ядерной физики стало доступным искусственное получение новых изотопов для различных элементов. И в настоящее время для каждого элемента известны несколько изотопов, часть которых встречается в природе, другие же, обладая меньшей устойчивостью, могут получаться искусственным путем и испытывают превращение с той или другой скоростью. [c.46]

    Различные изотопы отличаются друг от друга устойчивостью. Так, изотопы водорода протий и дейтерий вполне устойчивы и из их смеси состоит природный водород (дейтерий 0,016%) тритий же неустойчив, самопроизвольно подвергается радиоактивному распаду, отчего в природном водороде его нет и он может быть получен лищь искусственно. 26 элементов имеют лишь по одному устойчивому изотопу — такие элементы называются моноизотопны-ми (они характеризуются преимущественно нечетными атомными номерами), и атомные массы их приблизительно целочисленны. У 55 элементов имеется по нескольку устойчивых изотопов — они называются полиизотопными (большое число изотопов характерно для элементов преимущественно с четными атомными номерами). У остальных элементов известны только неустойчивые, радиоактивные изотопы. Это все тяжелые элементы, начиная с элемента № 84 (полоний), а из относительно легких — № 43 (технеций) и № 61 (прометий). Однако радиоактивные изотопы некоторых элементов относительно устойчивы (характеризуются большим периодом полураспада ), и потому эти элементы, например торий, уран, встречаются в природе. В большинстве же радиоактивные изотопы получают искусственно, в том числе и многочисленные радиоактивные изотопы устойчивых элементов. [c.23]

    В табл. 1 приведены названия (русские и латинские) элементов, химические знаки, порядковые номера их в периодической системе элементов Д. И. Менделеева, относительная атомная масса и год открытия. Атомные массы приведены по Международной таблице 1981 г. Звездочкой обозначены искусственно полученные элементы древн. — элемент, известный в глубокой древности средн. — элемент открыт в средние века. В квадратных скобках приведены массовые числа изотопов, обладающих наибольшим для данного радиоактивного элемента периодом полураспада. Названия и химические знаки элементов, приведенные в круглых скобках, не являются общепринятыми. [c.6]

    ЛОУРЕНСИЙ (Lowrensium) Lr — искусственно полученный радиоактивны химнчес шй элемент семейства актиноидов, п. н. 103, массовое число самого устойчивого изотопа 256, Выделен Л, А. Гиорсо с группой сотрудников радиационной лаборатор и им, Э. Лоу-peii a в Беркли (штат Калифорния, США) [c.149]

    Э. Ферл<и) Fm — радиоактивный химический элемент III группы 7-го периода периодической системы элементов Д. И. Менделеева, п. н. 100, относится к актиноидам. Ф. имеет И изотопов. Впервые получен искусственно в 1953 г. [c.262]

    Радиоактивный э.гемент — химический элемент, все известные изотопы которого радиоактивны. Сюда относятся как природные элементы (полоний, астат, франций, радий, уран и др.), так и искусственно полученные (технеций, прометий, плутоний, фермий, менделевий и др.). [c.378]

    Элементы хром Сг, молибден Мо и вольфрам составляют VIБ группу Периодической системы Д. И. Менделеева. Искусственно получен и их аналог в 7-м периоде — радиоактивный элемент 106 в виде изотопа с массовым числом 263 и периодом полураспада 0,9 с (собственного названия 9, 1еменп 106 пока не имеет). [c.237]

    Изотопы бария сыграли важную роль в открытии деления урана. В опытах Ферми изучалось действие нейтронов на соединение урана. В результате нейтронного облучения возникла искусственная радиоактивность. Полученные при этом радиоактивные изотопы были по химическим свойствам сходны с радием. Используя прием извлечения очень малых количеств радия из реакционной смеси, разработанный Марией Склодовской-Кюри (с. 224), Ферми вводил в систему соединения бария, выделяя которые можно было сконцентрировать радий. И действительно, барий извлекал из раствора семидесятисекундный Т /2  [c.25]

    Получением изотопа Р в 1934 г. началась новая страница в ядерной физике и химии — Ирен и Фредерик Жолно-Кюри получили первый искусственный радиоизотоп. Была использована следующая ядерная реакция , А1 +. ]Не == дР Н- п. Радиофосфор быстро (период полураспада 2,53 мин) превращался в устойчивый изотоп кремния с выделением позитрона Р —> + е. В настоящее время известно свыше 1000 радиоактивных искусственных изотопов, полученных различными ядерными реакциями. Многие из них применяются в качестве меченых атомов. В частности, с помощью радиоактивных изотопов фосфора можно проследить скорость движения и преиму щественное накопление фосфора в растительных организмах. [c.539]

    Астат. Элемент № 85 — астат (А1) — имеет электронную конфигурацию [Хе14/1 5с( % 6/з и принадлежит к УПА-группе периодической системы, являясь более тяжелым аналогом иода. Стабильных изотопов не имеет. Известны 20 изотопов с массовыми числами 200— 219. Из них наиболее устойчив 1 "А1 (Г./, =8,3 ч). Природный астат входит в радиоактивные семейства урана, актиноурана и нептуния. Все природные изотопы астата подвергаются а-распаду, превращаясь в изотопы висмута. В свою очередь методы искусственного получения А1 основаны иа бомбардировке изотопов висмута а-части-цами, например  [c.430]

    Принципиальной разницы между природной и искусственной радиоактивностью не существует, так как свойства изотопов не зависят от способа их образования. Радиоактивный изотоп, полученный искусственным путем, ничем не отличается от того же самого природного изотопа. Первые искусственно полученные задиоактив-ные изотопы испускали позитроны, но это далеко не единственный и даже не наиболее вероятный тип распада. Наиболее распространенным типом распада, как у природных элементов, является р-распад с испусканием электронов. Для многих тяжелых элементов характерен а-распад. [c.400]


Смотреть страницы где упоминается термин Радиоактивные изотопы искусственное получение: [c.94]    [c.338]    [c.338]    [c.52]   
Физическая химия для биологов (1976) -- [ c.462 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопы радиоактивные

Радиоактивность искусственная



© 2025 chem21.info Реклама на сайте