Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиизопрен химические реакции

    Практически часто применяется смешанная классификация химических реакций в полимерах по видам соответствующих превращений макромолекул и видам воздействия на них. В ряде случаев определенный вид воздействия приводит и к одному виду изменений макромолекул, но иногда в зависимости от химической природы полимеров один И тот же вид воздействия может привести к разным изменениям структуры макромолекул. Например, при действии высоких температур может протекать деструкция, т. е. распад линейных макромолекул у одних полимеров (полипропилен, полистирол), циклизация — у других (полиакрилнитрил), образование сетчатых структур — у третьих (1.2-полибутадиен, сополимер бутадиена со стиролом), а также смешанные случаи (полиизопрен и др.). При облучении, например, полиэтилена одновременно протекают реакции соединения макромолекул друг с другом (сшивание) и распада отдельных молекул (деструкция). [c.219]


    Химические реакции в полимерах могут быть вызваны действием света. При малой длине волны светового излучения кванты света могут вызвать отрыв боковых активных атомов или групп от макромолекул или разрыв макромолекул. В результате инициируются цепные реакции деструкции или присоединения мономеров к макрорадикалам полимерных молекул. Обычно такие изменения вызываются излучением света с длинами волн 230— 410 нм. При повышении температуры резко ускоряется процесс деструкции, который в этом случае называется фотолизом. Облучение растворов каучука ультрафиолетовым светом в инертной среде приводит к снижению их вязкости, что объясняется образованием более коротких молекул в результате деструкции. В результате облучения светом может происходить сшивание макромолекул. Так, полиизопрен при действии солнечного света размягчается и становится липким. При облучении его кварцевой лампой в вакууме при комнатной температуре выделяются летучие продукты распада, среди которых до 80% приходится на молекулярный водород. При облучении ультрафиолетовым светом толуольных растворов полиизопрена наблюдается уменьшение их вязкости, связанное со снижением молекулярной массы полиизопрена (натуральный каучук). В концентрированных растворах после снижения молекулярной массы отмечен ее рост, что связано с формированием нерастворимой фракции (гель) при соединении макромолекул полиизопрена в сетчатую структуру. [c.242]

    Хоффман [59] применил комбинацию метода турбидиметрического титрования с проведением химических модификаций для того, чтобы оценить содержание 3,4-звеньев или циклических структур в полиизопрене. Путем реакции с гидроперекисью бензоила удавалось резко увеличить растворимость [c.210]

    Высокомолекулярные углеводороды с двойными связями, а-метиленовыми и функциональными группами участвуют в тех же реакциях, что и низкомолекулярные соединения с аналогичными группами и двойными связями. Однако вследствие большой молекулярной массы число активных групп, в частности, звеньев с двойными связями, в цепи макромолекул эластомера велико, и при той или иной химической реакции не все двойные связи одной молекулы раскрываются одновременно. Например, тиофенол и этиловый эфир тиогликолевой кислоты присоединяются к полиизопрену значительно медленнее, чем к изопентену. [c.139]


    Из табл. 10 видно, что в таких полимерах, как полиэтилен, полистирол, полиизопрен, поликапроамид и в огромном количестве других полимеров, химический состав звена полностью соответствует молекуле исходного мономера. Указанные полимеры образуются в результате реакции полимеризации, т. е. присоединения мономеров за счет размыкания двойных или тройных связей или разрыва неустойчивого цикла. [c.49]

    Практически все полимеры и материалы в процессе эксплуатации подвержены действию света - фотодеструкции. Ино] да кванты света, поглощенные полимером, вызывают разрыв химических связей в макромолекулах с образованием свободных радикалов. Фотол.еструкции подвержены полимеры, содержащие группировки, способные поглощать свет с короткой (менее 400 нм) длиной волны так, политрифторхлорэтилен имеет в 40...45 раз меньшую стойкость, чем политетрафторэтилен. При действии на полимеры световой радиации может происходить не только деструкция, но и структурирование с возрастанием молекулярной массы облученного полимера. Если подействовать на полиизопрен ультрафиолетовым светом, то возможно протекание химических реакций с отрывом атома водорода и образованием свободных радикалов [c.112]

    Галогенирование ненасыщенных углеводородных полимеров полиизопрен, полибутадиен, полихлоропрен) также протекает по-разному в зависимости от химической природы исходного полимера. Наиболее простое взаимодействие путем присоединения галогена к двойной связи полидиенов имеет место лишь при строгом соблюдении ряда условий реакции. Обычно наряду с присоединением происходит и реакция замещения водорода, а также образование диклических структур (внутримолекулярные превраш,ения) и сши-вания (межмакромолекулярные реакции). [c.280]

    Уже этого краткого рассмотрения основных характеристик полимеров достаточно для того, чтобы понять, что генезис, т. е. способ получения макромолекул из низкомолекулярных молекул мономеров, влияет практически на все основные свойства полимера. В природе полимеры (за исключением некоторых смол) образуются, как правило, с высокой степенью химической и пространственной регулярности, с правильным чередованием звеньев в структуре полимера. Это, например, молекулы целлюлозы, натурального каучука ( цыс-1,4-полиизопрен), белков и нуклеиновых кислот. В формировании природных полимеров принимают участие соответствующие ферменты и катализаторы, которые обеспечивают направленное протекание реакций. В начальный период развития химии синтетических полимеров, когда еще не были найдены совершенные катализаторы синтеза, получались полимеры с нерегулярной структурой, малой молекулярной массой и вследствие -этого с низкими физико-механическими показателями. По мере развития этой отрасли химической науки и производства (особенно с 50-х гг.) были разработаны способы получения пространственно и химически регулярных полимеров (стереоспецифическая полимеризация) из промышленнодоступных мономеров (этилен, пропилен, стирол и др.), что привело к громадному росту производства различных полимеров. Большинство из этих полимеров в природе не создаются. Получение полимеров осуществляется в результате реакций полимеризации или поликонденсации. [c.11]

    В табл. 47 приведены примеры, характеризующие соответствие химического состава мономера (или мономеров) химическому составу мономерного звена полимерной цепи в таких полимерах, как полиэтилен, полистирол, полиизопрен и др. Эти полимеры образуются в результате реакций полимеризации, т. е. соединения мономеров за счет размыкания двойных или тройных связей или разрыва неустойчивого цикла. Однако в таких полимерах, как полигексамети-ленадипамид, полиэтилептерефталат и другие, химический состав. мономерного звена и исходных веществ совпадает не полностью, так как в процессе синтеза полимера выделяется вода и соответственно в полимере уменьшается число атомов водорода и кислорода. Реакции, при которых образование полимера протекает с выделением побочных продуктов, называют реакциями поликонденсации. [c.351]


Смотреть страницы где упоминается термин Полиизопрен химические реакции: [c.185]   
Химия синтетических полимеров Издание 3 (1971) -- [ c.285 ]




ПОИСК





Смотрите так же термины и статьи:

Полиизопрен



© 2024 chem21.info Реклама на сайте