Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация в результате цепных реакций

    Механизм образования сажи (дисперсного углерода) при горении реактивного топлива и в общем случае при химических превращениях углеродсодержащих веществ изучен еще недостаточно. Исследователи основную роль отводят полимеризации или цепным разветвленным реакциям. В последнем случае физико-химическая модель процесса включает разветвленные цепные реакции образования радикалов-зародышей, превращение их в зародыши твердой фазы (минимальные частицы, имеющие физическую поверхность) и дальнейший рост зародышей за счет гетерогенного разложения углеводородов на их поверхности. Сторонники полимеризационной схемы отмечают, что образование ацетилена наблюдается даже в метано Кисло-родном пламени. После достижения максимальной концентрации ацетилен превращается в моно- и полициклические ароматические углеводороды и полиацетилен. Экспериментально показано также, что в соответствующих условиях появлению сажевых частиц предшествует образование (в результате полимеризации) крупных углеводородных молекул с молекулярной массой примерно 500. [c.168]


    Влияние различных факторов на процесс радикальной полимеризации и свойства получаемого полимера. Механизм большинства реакций цепной полимеризации гораздо сложнее рассмотренной простейшей системы. Однако, зная общие закономерности процесса, легче понять влияние различных факторов на течение и результаты конкретных реакций цепной полимеризации. [c.77]

    Реакции, при протекании которых возникают промежуточные вещества с высокой энергией (радикалы), часто имеют механизм цепных реакций. Обычно в момент элементарного акта взаимодействия между активными молекулами появляются реакционноспособные промежуточные вещества — активные центры,—которые в свою очередь реагируют с компонентами реакционной системы, воспроизводят подобные себе частицы, в результате чего происходит циклическое повторение стадий реакции, Таким образом, возникает цепь реакций, так как после первичного акта цепной реакции появляется активная частица с высокой энергией (например, при воздействии излучения), которая продолжает последовательность стадий реакции. Такого рода процессы характерны прежде всего для реакций в газовой фазе (взрыв гремучего газа, реакция водорода с хлором), а также для некоторых реакций в растворах (фотохимические реакции, реакции полимеризации и т. д.). Возникновение реакционноспособной частицы часто называют реакцией зарождения цепи, например реакция (За) при образовании НВг (гл. 7). Под развитием цепи понимают последовательное продолжение элементарных стадий с постоянным образованием активных центров, продолжающих цепь радикалов. К реакциям обрыва цепи относится рекомбинация, т. е. реакция, обратная (За). Еще раз обратимся к уже описанному выше процессу образования бромоводорода (гл. 7). Для него найдена следую- [c.180]

    Радикальный механизм гомогенного катализа возможен как в газовой, так и в жидкой фазе. Катализатор служит инициатором, направляющим реакцию по цепному механизму. Ускорение достигается в результате появления богатых энергией частиц — свободных радикалов в процессе самой реакции. По такому механизму протекают некоторые окислительные реакции в газах, полимеризация в жидкой фазе и т. п. Типичным примером газофазной каталитической реакции радикального типа моя<ет служить действие оксидов азота на окисление алканов, в частности метана в формальдегид. Взаимодействие метана с оксидами азота вызывает цепную реакцию с относительно легким зарождением цепей и высокой скоростью их обрыва. Механизм этого процесса можно представить упрощенно следующей цепью реакций  [c.222]


    Большое внимание уделяют вопросам образования осадка (в результате окислительных процессов) не только в электроизоляционных, но и в турбинных и автомобильных маслах. Химизм этого явления еще не вполне ясен, но, по-видимому, имеет место полимеризация и конденсация продуктов окисления (таких как оксо-и ненасыщенные спирты, альдегиды, кетоны и кислоты) в малорастворимые соединения. В литературе сообщается, что при окислении образуются гидрооксикислоты нафтенового и жирного рядов [90], а также их ангидриды [91]. Окисление трансформаторных масел в отсутствие или присутствии катализаторов, роль которых могут играть соли металлов и жирных кислот 2 —Сдз [92], или неметаллические детали трансформатора (такие, как лак на обмотках, фарфоровые изоляторы и т. д. [93—96], идет с такой же кинетикой, как и окисление углеводородов в других нефтепродуктах [97—102]. Происходящая цепная реакция в промышленной практике может быть успешно ингибирована добавлением небольших количеств антиокислителей, вследствие чего срок службы [c.566]

    Свободные радикалы, возникающие в окислительно-восстановительных системах и при термическом распаде инициаторов, способны вызывать сложную цепную реакцию полимеризации, в результате которой образуется полимер с высокой молекулярной массой [13—17]. [c.140]

    Явление сополимеризации несравненно сложнее, чем простая полимеризация. При смешении двух способных к полимеризации компонентов в присутствии какого-либо инициатора (катализатора), как уже было указано, в результате цепной реакции образуются и полимеры и сополимеры. Выяснение кинетики и механизма этих процессов является, в большинстве случаев, очень сложной задачей. При бинарной сополимеризации вместо одной реакции роста цепи имеются, по меньшей мере, четыре вместо двух возможных реакций обрыва цепи (диспропорционирование) обнаруживаются, по меньшей мере, семь различных обрывов и т. д.  [c.631]

    Полимеризация в жидкой фазе происходит обычно Б результате цепных реакций (см. стр. 98), для инициирования которых применяют нестабильные вещества типа перекисей. Образование из жидкости твердых полимеров, эластичных или стеклообразных, по химическому составу не отличающихся от исходных мономеров, имеет внешнее сходство с кристаллизацией. [c.121]

    Этот процесс кинетически является типичной неразветвленной цепной реакцией, поскольку идет с образованием свободного радикала, т. е. с его регенерацией. Каждый акт присоединения к растущему свободному радикалу новой молекулы мономера дает звено цепи. Длина цепи показывает, сколько молекул мономера вступило в процесс полимеризации в расчете на один начальный свободный радикал. Это — кинетическая длина цепи в отличие от длины цепи образующегося полимера (степени полимеризации). Если процесс полимеризации не осложнен дополнительными элементарными стадиями (например, стадиями передачи цепи), то степень полимеризации равна кинетической длине цепи v при обрыве цепи диспро-порционированием, и равна удвоенной кинетической длине цепи 2v при обрыве в результате рекомбинации. [c.386]

    Подавляющее большинство полимеров, применяемых в производстве химических волокон, резиновых изделий, пленок, пластических масс, лаков, получают, как указывалось, синтетическим путем из низкомолекулярных соединений (мономеров). Соединение молекул низкомолекулярных веществ между собой с образованием макромолекул полимера может происходить в результате различных реакций, в зависимости от строения исходных мономеров. Если в молекулах мономеров имеются функциональные группы, вступающие в реакцию между собой, и процесс присоединения молекул друг к другу сопровождается выделением побочных низкомолекулярных продуктов, то процесс синтеза полимера носит название реакции поликонденсаЦии. В случае, когда синтез полимера является следствием перегруппировок внутри функциональных групп без изменения элементарного состава, такой процесс называют ступенчатой полимеризацией. Если же молекулы мономера содержат кратные связи или представляют собой циклические соединения и образование макромолекул происходит в результате раскрытия двойных связей или разрушения циклов и не сопровождается выделением побочных продуктов, то процесс получения полимера называется реакцией цепной полимеризации. Поликонденсация и цепная полимеризация являются наиболее распространенными способами получения полимеров. [c.384]

    Свободно-радикальная полимеризация — это цепная реакция, включающая стадии инициирования, роста и обрыва. Первая стадия состоит в генерировании свободных радикалов, обычно происходящем в результате термического распада инициатора (I) на два свободных радикала (К ). Реакция распада характеризуется константой скорости  [c.201]


    Радикальная полимеризация является цепной реакцией, состоящей из трех последовательных стадий инициирования, роста цепи и обрыва цепи. В свою очередь стадия инициирования состоит из двух реакций. Первая заключается в образовании свободных радикалов в результате тех или иных реакций, основная из которых — гомолитический распад молекулы инициатора I (или катализатора) на два радикала К  [c.159]

    Инициирование цепной реакции полимеризации соединений с ви-нильной группой может быть представлено как результат начального присоединения гидроксильного радика ла к двойной связи. [c.371]

    Полимеризация в жидкой фазе происходит обычно в результате цепных реакций, которые приводят к образованию важнейших твердых высокомолекулярных соединений — синтетических каучуков, волокон, смол, пластических масс. [c.90]

    Под полимеризацией понимают химическую реакцию, при которой мономерное соединение, содержащее реакционноснособные двойные связи или кольца, переходит в полимер самопроизвольно, либо под действием инициатора (катализатора), либо богатого энергией излучения. Характерный признак полимеризации—не схема присоединения, а кинетика ее протекания полимеризация является цепной реакцией [52—53]. О полимеризации говорят в том случае, когда в результате [c.20]

    ПОЛИМЕРИЗАЦИЯ В РЕЗУЛЬТАТЕ ЦЕПНЫХ РЕАКЦИЙ [c.553]

    Цепная молекула полимера называется макромолекулой. Составляющие ее низкомолекулярные повторяющиеся структурные единицы, или звенья, образованы низкомолекулярными веществами, способными к многократному соединению друг с другом в результате химической реакции синтеза. Эти вещества называют мономерами, а их соединение в макромолекулу полимера происходит в результате химических реакций, протекающих по законам цепных или ступенчатых процессов. Очевидно, что степень полимеризации, т. е. число мономерных звеньев в одной макромолекуле, определяет молекулярную массу полимера, которая составляет десятки, сотни тысяч, а иногда и миллионы углеродных единиц [c.7]

    Термическая димеризация изобутилена. При полимеризации изобути-леыа при температуре 370—460° С и давлении 36—ЗбОат, выходы 1,1-3-триметилциклопентана преобладают над выходами октилена [36]. На долю первого приходится около 46% от всего жидкого продукта, полученного в результате полимеризации бутилена при температуре 400° С и давлении 36 ат. Образование циклического димера происходит в результате цепной реакции, инициируемой свободными радикалами, образующимися при термическом разложении изобутилена или любым другим способом  [c.225]

    Цепная полимеризация. Большинство применяемых в технике карбоцепных полимеров (полимеры для ряда синтетических волокон, пластических масс, синтетические каучуки) получаются путем цепной полимеризации. Цепная полимеризация относится к процессам, известным под общим названием цепных реакций. Это такие процессы, при которых энергия, выделяющаяся в результате завершения одного акта присоединения, передается другой молекуле и возбуждает новый акт присоединения. Теория цепных реакций разработана Н. Н. Семеновым. [c.445]

    В результате действия ионизирующих излучений на некоторые, вещества и смеси веществ могут протекать реакции, ведущие к -образованию технически важных продуктов. В настоящее время исследованы такие процессы, как радиационно-химическая полимеризация, изменение свойств полимеров в результате сшивания, низкотемпературный крекинг нефти, синтез гидразина из аммиака, окислов азота из воздуха и ряд других процессов. Особый интерес представляют цепные реакции под действием ионизирующего излучения. К таким реакциям относятся окисление углеводородов, их галоидирование, сульфоокисление, сульфохлорирование, полимеризация и др. [c.597]

    Процесс окисления сырья при получении битумов протекает по радикально-цепному механизму. При этом происходит образование свободных радикалов и гидроперекисей в качестве промежуточных продуктов. Кроме того, возникают цепные реакции обрыв цепей происходит в результате рекомбинации радикалов. В системе устанавливается равновесная концентрация свободных радикалов. Одновременно протекает множество реакций окислительное дегидрирование, деалкилирование, окислительная полимеризация, поликонденсация, крекинг с последующим уплотнением его продуктов. В зависимости от условий окисления возможны взаимные превращения кислых и нейтральных продуктов окисления. [c.470]

    При цепной полимеризации длина образующихся макромолекул обычно очень велика молекулярная масса их часто достигает нескольких сотен тысяч и даже миллионов. Молекулярная масса, или конечная степень полимеризации полимера, образующегося в результате цепной полимеризации, нарастает не постепенно по мере протекания реакции, а достигается почти мгновенно. Средняя молекулярная масса, степень и характер полидисперсности образующейся смеси полимергомологов зависят от кинетики реакции полимеризации, оказывающей поэтому решающее влияние на свойства конечных продуктов. [c.62]

    Крекинг углеводородов, полимеризация и ряд других реакций протекают по цепному механизму. Зарождение цепи, т. е. появление радикалов, происходит вследствие инициирующего действия некоторых высокоактивных веществ или света, радиационных излучений, высокой температуры и т. п. Развитие цепи протекает самопроизвольно, так как образовавшиеся свободные радикалы или атомы взаимодействуют с молекулами, в результате чего получаются продукты реакции и новые радикалы или свободные атомы. Скорость простой цепной реакции выражается формулой [c.135]

    Склонные к полимеризации или сополимеризации алкены, такие как стирол, а-метилстирол, инден и другие, дают полипероксиды в результате цепной реакции [73]. Гомолитическое термическое разложение полипероксидов, полученных из стирола и кислорода, дает бензальдегид и формальдегид за счет р-расщеп-ления это разложение также является цепным процессом. [c.481]

    Полимеризация мономеров с кратными связями протекает по законам цепных реакций в результате разрыва непредельных связей  [c.14]

    Важную разновидность цепных реакций представляют процессы полимеризации, при помощи которых в настоящее время производятся многочисленные синтетические материалы. Процессы полимеризации отличаются от обычных цепных реакций тем, что при их протекании возникающие радикалы не регенерируются, а образуют радикалы с более высокой молекулярной массой, что происходит благодаря соединению их с мономерами. Процессы полимеризации инициируются добавлением веществ, легко отщепляющих радикалы (обычно органические перекиси). Примером такой реакции может служить полимеризация ви-нилхлорида СНг = СНС1, в которой цепи возникают в результате расщепления перекиси бензоила  [c.353]

    Цепные реакции — химические и ядерные реакции, в которых появление активной частицы (свободного радикала или атома в химических, нейтрона в ядерных процессах) вызывает большое число (цепь) последовательных превращений неактивных молекул или ядер. Свободные радикалы или атомы в отличие от молекул обладают свободными ненасыщенными валентностями (непарным электроном), что приводит к легкому нх взаимодействию с исходными молекулами. Прн первом же столкновении свободного ради кала (R ) с молекулой происходит р азрыв одной из валентных связей последней, и, таким образом, в результате реакции образуется новая химическая связь и HOBiiin свободный радикал, который в свою очередь реагирует с другой молекулой — происходит цепная реакция. В ядерных Ц. р. активными частицами являются нейтроны, так как они, не обладая зарядом, беспрепятственно сталкиваются с ядрами атомов и вызывают ядерпуюреакцию (деление ядер). КЦ. р. (в химии) относятся процессы окисления (горение, взрыв), крекинга, полимеризации и др., широко применяющиеся в химической и нефтяной промышленности. Изучение Ц. р. ядерной физики имеет большое значение для использования атомной энергии. Церезин — очищенный озокерит. [c.153]

    Хеуер [30] в своей диссертации указывает, что это представление о происхождении и структуре высокомолекулярных веществ неправдоподобно. Вопрос, являются ли молекулы высокомолекулярных соединений нитеобразными или удлиненными циклическими молекулами, разрешен в пользу первого предположения. Замыкание цикла удлиненных нитеобразных молекул прсисходит чрезвычайно трудно. Доказано, что при полимеризации над катализатором стирола в полуколлоидные полистиролы образуются небольшие молекулы, потому что катализатор довольно скоро прекращает цепную реакцию. В результате цепных реакций возникают нитеобразные молекулы концы молекул не замыкаются в цикле. Обрыв цепной реакции наступает благодаря другой реакции, в результате которой на концы молекулы присоединяются инородные группы. [c.636]

    Известно довольно большое число цепных реакиий, которые могут быть инициированы путем добавления небольшого количества веществ, способствующих образованию свободных радикалов, или за счет того, что эти вещества, распадаясь, сами образуют свободные радикалы (например, перекиси при полимеризации), илн в результате химических реакций инициатора с реагирующими веществами (например, ускорение реакции взаимодействия хлора с водородом в темноте в присутствии паров натрия) атомы натрия реагируют с молекулярным хло-< ром с образованием насыщенной молекулы хлористого натрия и атомов хлора по реакции Na-f b-> Na l + С1. [c.203]

    Радикальная полимеризация виниловых мономеров СН2=СНХ лежит в основе технологии получения разнообразных полимерных материалов, ее механизм и кинетические закономерности интенсивно изучались в 50-60-х годах этому вопросу посвящен ряд монографий. От других цепных реакций радикальную полимеризацию отличают следующие две особенности. Во-первых, в результате цепного процесса последовательного присоединения молекул мономера к растущему макрорадикалу происходит материализация многократно повторяющихся актов продолжения цепи в виде продукта - макромолекулы. Во-вторых, звено цепи включает всего одну реакцию, а именно реакцию макрорадикала R с двойной связью мономера. Присоединение СН2=СНХ к радикалу R происходит, как правило, по СНг-группе, так что образуется радикал R—СНгСИХ и последующее присоединение идет по типу голова к хвосту , энергетически наиболее выгодному  [c.356]

    Реакции полимеризации происходят иногда самопроизвольно при обычной температуре (так полимеризуется, например, стирол СбНб—СН=СН2), но они ускоряются под влиянием тепла и света, особенно ультрафиолетовых лучей, а также в присутствии различных инициаторов и катализаторов минеральных и органических перекисей, некоторых галоидных соединений (хлористый алюминий, фтористый бор, хлористое олово, пяти- хлористая сурьма и др.), восстановительно-окислительных (ре-докс-) систем и т. д. Реакции полимеризации это — цепные реакции, для осуществления которых необходимо наличие активи- рованных молекул мономера. Последние возникают в результате различных процессов, приводящих к образованию свобод-I ных радикалов, к которым могут далее присоединяться молекулы мономера (фаза инициирования). [c.11]

    Если проводить полимеризацию, например, этилена, инициированную перекисью бензоила, в присугствии четыреххлористого углерода СС14, или хлороформа, то получатся полимеры, в которых содержатся СС14 или хлороформ. Этот процесс является результатом цепной реакции между радикалами, которая может быть описана следуюш им образом. Радикал ра-стуш,ей цепи реагирует, папример, с четыреххлористым углеродом, причем выделяется один атом хлора и образуется радикал СС1з  [c.582]

    В принципе он основан на том, что нри действии света на фотосенсиби-лиаированную полимеризацию (или другую цепную реакцию) скорость, с которой достигается стационарная концентрация радикалов, определяется скоростью квадратичного обрыва цепей. С другой стороны, скорость поглощения мономера зависит от первой степени концентрации радикалов. В результате скорость поглощения мономера может быть прямой мерой средней концентрации радикалов. [c.519]

    Реакции цепной полимеризации могут сопровождаться реакция мн передачи (переноса) цепи, а также пзаимодействием макрора--дикалов с двойной связью цепи полимера. Реакции передачи цепи заключаются во взаимодействии растущего полимерного радикала с насыщенной молекулой АВ, в результате чего происходит обрыв молекулярной цепи [c.41]

    Автокаталитически ми называются реакции, в которых катализатором является один из промежуточных или конечных продуктов реакции. Так, в цепных реакциях автокатализаторами служат свободные радикалы. К числу автокаталитических относятся некоторые реакции разложения взрывчатых веществ, горения, полимеризации и др. Восстановление никеля и меди из их оксидов водородом катализируется образующимися металлами. Для автокатализа характерна малая скорость реакций в начальный период, называемый периодом индукции, и быстрое нарастание выхода продукта в последующий период в результате возрастания количества катализатора (рис. 96). В дaльнeйщeJv выход продукта увеличивается согласно закону действующих масс, так же как и для обычных реакций. [c.220]


Смотреть страницы где упоминается термин Полимеризация в результате цепных реакций: [c.195]    [c.604]    [c.94]    [c.604]    [c.221]    [c.415]    [c.44]    [c.111]    [c.403]    [c.33]   
Смотреть главы в:

Теоретические основы органической химии Том 2 -> Полимеризация в результате цепных реакций




ПОИСК





Смотрите так же термины и статьи:

Реакции полимеризации

Цепная полимеризация

Цепные реакции

Цепные реакции Реакции цепные



© 2025 chem21.info Реклама на сайте