Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дезаминирование пролина

    Как правило, реконструированные частицы, получаемые путем объединения белковой оболочки с вирусной РНК, обработанной азотистой кислотой, не обладают инфекционной способностью. Следовательно, в большинстве случаев дезаминирование оснований под действием азотистой кислоты приводит к летальным мутациям. В некоторых случаях мутации не легальны и белок мутантного вируса отличается от нативного белка по аминокислотному составу. Например, известен нитритный мутант, у которого на местах, занятых в нативном вирусе пролином, аспарагиновой кислотой и треонином, находятся соответственно лейцин, аланин и серии. В белке ВТМ С-концевая последовательность аминокислотных остатков имеет вид -Гли-Про-Ала-Тре. Протеолитический фермент карбоксипептидаза отщепляет от С-конца при каждом акте отщепления одну аминокислоту. [c.364]


    В разд. 2 гл. XX мы уже говорили о том, что у нитритных мутантов ВТМ на месте пролина находится лейцин. Это замещение согласуется с приведенным выше кодом. Действительно, при дезаминировании цитозин превращается в урацил и соответственно изменяется кодовый триплет. Правильность кодовых триплетов, найденных при изучении невирусных систем, подтверждается также тем, что у нитритных мутантов ВТМ фенилаланин может появиться, но никогда не исчезает. Результаты экспериментов, в которых сополимеры синтетических нуклеотидов, обработанных азотистой кислотой и, следовательно, дезаминированных, вводились в синтезирующие белок бактериальные системы, согласуются с приведенными выше данными. После обработки поли-УЦ азотистой кислотой активность этого сополимера изменяется, причем в отношении стимуляции вклю- [c.377]

    Более сложным путем происходит дезаминирование (вернее отщепление иминогруппы) 1-пролина и близкой к нему аминокислоты Ь-оксипролина (иминокислоты). Пролин подвергается дегидрированию и дальнейшему превращению с образованием глютаминовой кислоты, которая затем дезаминируется обычным для нее путем с помощью специфической дегидразы. [c.350]

    Результаты многочисленных исследований свидетельствуют о том что генетический код, установленный для Е. соИ, является универсальным. Так, например, в лабораториях Уитмана и Френкель-Конрата препарат РНК, экстрагированный из вируса табачной мозаики, обработали азотистой кислотой известно, что при этом происходит дезаминирование многих остатков цитозина с образованием урациловых остатков, в результате чего кодоны U U (серин) превращаются в UUU (фенилаланин). Аналогичным путем из кодона ССС (пролин) может образоваться СиС (лейцин). Оказалось, что при заражении растений табака препаратом РНК, обработанной азотистой кислотой, аминокислотная последовательность вирусного белка оболочки, выделенного из мутантных штаммов, действительно меняется [22]. Причем многие из происшедших изменений можно было точно предсказать исходя из данных, приведенных в табл. 15-3. Сходным образом, замены аминокислот в дефектных молекулах гемоглобина (рис. 4-17) в большинстве случаев могут быть обусловлены изменением только одного основания. Так, гемоглобин S может образовываться в результате одного из следующих изменений в седьмом кодоне GAA(Glu) GUA(Val) или GAG(Glu)- ->GUG(Val). Еще один аргумент в пользу универсальности генетического кода состоит в способности рибосом и молекул тРНК из Е.соН осуществлять трансляцию цепи мРНК, кодирующей синтез гемоглобина, и синтезировать при этом полноценный гемоглобин [23]. [c.195]

    Возможен и обратный процесс. Многие аминокислоты (аланин, фенилаланин, тирозин, гистидин, триптофан, серин, цистеин) содержат в своем составе трехуглеродный фрагмент, из которого в процессе распада указанных аминокислот возникают пировиноградная кислота и ее производные. Дезаминирование глутаминовой и аспарагиновой кислот ведет к образованию а-кетоглутарата и оксалоацетата соответственно, которые при посредстве цикла трикарбоновых кислот переходят в пировиноградную кислоту. Так же пролин, который легко превращается в глутаминовую кислоту, а из нее - в пировиноград ную. От нее несложен переход к углеводам посредством в основном обращения реакций распада фруктозо-1,6-дифосфата. [c.459]


    Известно, что следующие аминокислоты выделяют аммиак при облучении [36, 39—42] аланин, аргинин, аспарагин, аспарагиновая кислота, а-аминоизомасляная кислота, цистин, глутаминовая кислота, глицин, гистидин, лейцин, лизин, метионин, фенилаланин, серин, тирозин и валин. Цистеин [4-3] не способен к дезаминированию, вероятно, нз-за преобладающей реакции тиоловой группы (см. ниже). Пролин не образует аммиака [36]. Глицилглицин образует несколько больше аммиака на единицу дозы облучения, чем глицин, а его хлорид — значительно меньше [44]. Возможно, что дезаминирование может происходить как за счет амидной группы, так и за счет свободной аминогруппы в полипептидной цепи оно вызовет разрыв самой цепи. Предложен [36] следующий механизм для реакций дезаминирования свободной аминогруппы [c.220]

    Источником энергии, очевидно, служит сопряженная реакция окисления-восстановления. Роль донора водорода могут выполнять, например, аланин, лейцин, изолейцин, валин, серин, метионин и т.д. Акцепторами водорода могут служить глицин, пролин, аргинин, триптофан и т.д. Аминокислота-донор дезаминируется в оксокислоту, которая затем в результате окислительного декарбоксилирования превращается в жирную кислоту. Этот этап сопряжен с фосфорилированием и, таким образом, представляет собой реакцию, доставляющую энергию. Водород, перенесенный при этом на ферредоксин, снова связывается при восстановительном дезаминировании аминокислоты-акцептора. Однако не все аминокислоты используются всеми пептолитическими клостридиями. [c.298]

    При дезаминировании аспарагиновой кислоты, аланина и глутаминовой кислоты образуются а-кетокислоты, принадлежащие к числу промежуточных продуктов обмена углеводов. Введение per os этих аминокислот, а также валина [97, 98], серина [99, 100], глицина [99, 101], треонина [102], аргинина [103, 104],. гистидина [104—106] и изолейцина [104, 107] вызывает у голодающих животных увеличение содержания гликогена в печени. В определенных условиях пролин [104], цистеин [104] и метионин [108] также могут вызывать добавочное образование у леводов, тогда как в результате обмена тирозина (стр. 417), фенилаланина (стр. 425) и лейцина (стр. 359) образуютсл кетоновые тела. Недостаток этих экспериментальных приемов состоит в том, что получаемые результаты касаются обмена аминокислот в нефизиологических условиях не удивительно, что некоторые аминокислоты проявляют при одних условиях гликогене-тическое действие, а при других — кетогенное. Для изучения превращения аминокислот в процессах обмена веществ наиболее удобно вводить изотопную метку в углеродный остов аминокислоты и затем выяснить судьбу меченого углерода путем исследования продуктов обмена. Работы этого рода, относящиеся к отдельным аминокислотам, подробно рассмотрены в гл. IV. [c.181]

    О ТОМ, ЧТО в реакции Стикленда в качестве переносчика водорода участвует дифосфопиридиннуклеотид [187, 188] так, установлено, ЧТО дифосфопиридиннуклеотид может быть восстановлен аланином, а восстановленный кофермент вновь переводится в окисленную форму пролином или глицином. Исследования, проведенные в последние годы, свидетельствуют о том, что процесс сопряженного окислительного и восстановительного дезаминирования, описанный Стиклендом, состоит из сложного ряда промежуточных реакций некоторые стороны этого процесса, например природа систем, участвующих в переносе водорода, нуждаются в дальнейщем изучении. Те данные, которые известны в настоящее время, совместимы с приведенной выше схемой Нисмана [187]. [c.199]

    Калибровочные кривые для ь-аминокислот (ь-фенилаланин, ь-лей-цин, ь-метионин, ь-аланин и Е-пролин) и для о-аминокислот (о-фенила-ланин, о-аланин, о-валин, о-метионин, о-лейцин, о-норлейцин и о-изо-лейцин) имеют различные наклоны вследствие того, что субстраты обладают различной чувствительностью по отнощению к ффментам и разлагаются с различной скоростью. Наклон калибровочных кривых для ь- и о-пролина очень мал в частности кривые, полученные для о-пролина, почти параллельны оси абсцисс (концентрации аминокислоты). Это связано с тем, что под действием фермента е- и о-пролин подвергаются дезаминированию и вместо КН образуется метиламин  [c.187]

    Некоторые бациллы и клостридии способны сбраживать аминокислоты (без дезаминирования), но только в виде определенных пар. Одна аминокислота при этом служит донором, а другая — акцептором водорода реакция Стикленда). Донорами могут быть аланин, лейцин, изолейцин, валин, серии, акцепторами — глицин, пролин, аргинин, триптофан. В реакции [c.131]

    Если рассмотреть характер аминокислотных замен, легко обнаружить, что болыпинство из них соответствует тому, что должно произойти при дезаминировании цитозина и аденина. Так, часто происходят замены пролинов (ЦЦ Ур и никогда — фенилаланинов (УУдир-более частые замены (Про Лей или Сер Сер Фен или Лей Тре Иле, Ала или Мет Иле Вал Асн -> Сер Арг Гли) можно объяснить заменой в кодонах цитозина на урацил и аденина на гипоксантин. Бывают и исключения. Но они единичны и вполне могут быть объяснены спонтанными мутациями, не имеющими отношения к действию азотистой кислоты. С другой стороны, некоторые предполагаемые замены (например, Ала [c.206]

    Еще большее влияние, чем на усвоение иоиа NH4+, на усвоение аминокислот оказывают дикарбоновые кислоты. Например, у Phy omy es blakesleeanus на среде с аргинином вес достигал 43 мг, а при добавке в эту среду 0,1% янтарной кислоты—192 мг. Видимо, при этом легче происходит биосинтез набора аминокислот, образующихся в результате реакции переаминирования и участвующих далее в биосинтезе протеинов. Вторая функция дикарбоновых кислот состоит в нейтрализации получающегося при дезаминировании аминокислот избытка аммиака. Сходная причина, т. е. степень легкости использования в реакциях переаминирования, лежит в основе наблюдавшегося Стейнбергом явления градации степени пригодности аминокислот как единственного источника азота (Steinberg, 1942). Из 22 испытанных им аминокислот наилучшими оказались 7 аланин, аспарагиновая кислота, аргинин, глицин, глютаминовая кислота, пролин и оксипролин, которые были названы первичными. Стейнберг предполагал, что остальные [c.108]


    Определенный вклад в глюконеогенез вносят и другие аминокислоты, поскольку после дезаминирования или переаминирования их углеродный скелет полностью или частично включается в цикл. Примерами служат аланин, цистеин, глицин,, гидрок-сипролин, серии, треонин и триптофан, из которых образуется пируват аргинин, гистидин, глутамин и пролин, из которых образуется глутамат и далее а-кетоглутарат изолейцин, метионин и валин, из которых образуется сукцинил-СоА из тирозина и фенилаланина образуется фумарат (рис. 17.7). Вещества, образующие пируват, либо полностью окисляются до СО, по пируватдегидрогеназному пути, ведущему к образованию ацетил-СоА, либо следуют по пути глюконеогенеза с образованием оксалоацетата в результате карбоксилирования. [c.178]

    Дезаминирование некоторых аминокислот идет своеобразно. Так, серосодержащие аминокислоты (цистеин и метионин) дезаминируются путем отщепления аммиака и сероводорода или метилмеркаптана ( H3SH) соответственно оксиаминокислоты (серин и треонин)—путем отщепления аммиака и воды гетероциклические аминокислоты—путем дегидрирования по кольцу (пролин) с дальнейшим преобразованием продукта дегидрирования и т. д. Однако и в этих случаях конечными продуктами дезаминирования остаются кетокислоты и непредельные кислоты. [c.267]


Смотреть страницы где упоминается термин Дезаминирование пролина: [c.248]    [c.390]    [c.346]    [c.347]    [c.282]    [c.305]   
Биохимия Издание 2 (1962) -- [ c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Пролин



© 2025 chem21.info Реклама на сайте