Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты молекулярные массы и длина

    Неограниченная сложность строения и многообразие молекул органических соединений. Достаточно назвать природные биополимеры — белки, полисахариды, синтетические полимеры — капрон, лавсан, полиэтилен и т. д., вета-мины, гормоны и особенно нуклеиновые кислоты, молекулярная масса которых доходит до 41 о . Эта особенность органических соединений обусловлена способностью атома углерода образовывать бесконечно длинные цепи [c.12]


    Нуклеиновые кислоты делятся на две группы дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Молекулы этих кислот имеют гигантские размеры, молекулярная масса их составляет 6 - 12 миллионов. По своей структуре это длинные, нитевидные молекулы, и в их макромолекуляр-ной цепи имеется, как следует из названия, остаток рибозы (см. выше в разд. Углеводы ). Нуклеиновые кислоты обычно соединены с белками, и в этом случае говорят о нуклеопротеинах. [c.85]

    При исследовании строения биополимеров — гигантских молекул белков и нуклеиновых кислот, синтезируемых живыми организмами, возникают те же проблемы, что и при изучении природных соединений меньшей молекулярной массы. Сначала необходимо определить, в каком порядке атомы соединены друг с другом. Это дает возможность описать ковалентную молекулярную структуру. Далее необходимо выяснить, как ориентированы в пространстве цепи длинных полимерных молекул. Ведь биологические свойства белков и нуклеиновых кислот тесно связаны с их трехмерной пространственной структурой. Это особенно отчетливо проявляется в белках, которые, как было показано в разд. Ш-Е, обладают поразительным разнообразием биологических функций. В дальнейшем мы опишем некоторые из характеристик белков, которые позволяют им эффективно выполнять столь различные биологические функции, как участие в [c.172]

    Гель-электрофорез нуклеиновых кислот [34]. Если в 60-х годах разделение нуклеиновых кислот по молекулярным массам вели в основном путем ультрацентрифугирования в сахарозном градиенте, то в 70-х годах этот метод вытесняется методом электрофореза в геле. Впервые он был широко применен болгарским исследователем Р. Цаневым и сотр., и затем быстро завоевал общее признание. Оказалось, что в геле ДНК и РНК движутся тем быстрее, чем ниже их молекулярная масса. Пройденное расстояние обратно пропорционально логарифму молекулярной массы. Особенно важно, что разрешающая способность метода благодаря низкой диффузии гораздо выше, чем у ультрацентрифугирования. Для низкомолекулярных нуклеиновых кислот электрофорез ведется в полиакриламидном геле, для высокомолекулярных — в агарозном. Чем ниже концентрация геля, тем более высокомолекулярные нуклеиновые кислоты могут в нем разделяться. Подбирая условия, можно разделить как короткие олигонуклеотиды, отличающиеся по длине всего на один нуклеотид, так и молекулы ДНК размером до нескольких миллионов пар нуклеотидов. [c.27]

    Наблюдаемые на опыте подвижности белков при электрофорезе в присутствии ДСН зависят от молекулярной массы в полном соответствии с уравнением (12.75). На рисунке 12.18,Я показаны типичные результаты таких измерений. Те же рассуждения, которые мы приводили при обсуждении электрофореза белков в присутствии ДСН, годятся и для случая нуклеиновых кислот в обыкновенных водных буферах. Однако очень длинные молекулы уже нельзя рассматривать как жесткие стержни. В этом случае следует пользоваться аналогом уравнения (12.75), в котором вместо молекулярной массы фигурирует эффективный радиус гидратированной формы клубкообразной молекулы. Отградуировав систему с гелем, мы сможем определить величина которого в сочетании с седи- [c.305]


    Нуклеиновые кислоты являются очень трудным для работы материалом. Они чувствительны к расщеплению ферментами (ри-бонуклеаза, например, может быть обнаружена даже на кончиках пальцев исследователя). Они не терпят экстремальных значений pH и температуры и даже действия механических разрывающих сил. Длина молекулы ДНК, полученной из распространенной бактерии Е. oli, составляет примерно 1 мм, в то время как ее диаметр— около 2 нм. Таким образом, простое перемешивание или даже неосторожное взятие пипеткой раствора ДНК обычно приводит к существенному уменьшению ее молекулярной массы. Естественно, что наиболее ранние препараты ДНК представляли собой фрагментированный материал с низкой молекулярной массой. [c.35]

    Нерасходимость луча лазера существенным образом повышает разрешение индикатрисс рэлеевского рассеяния, что позволяет получить более точную информацию о размерах (молекулярных массах) и форме макромолекул и их комплексов. С помощью рэлеевского рассеяния лазерного света удалось, например, определить тонкие детали строения вируса табачной мозаики. Рамановское (комбинационное) рассеяние, связанное с изменением длины световой волны благодаря сложению или вычитанию частот колебаний электромагнитного излучения и молекулы, с успехом применяется для выяснения структурной организации молекул (белки, нуклеиновые кислоты, липиды и т. д.), межмолекулярных взаимодействий и их динамики. [c.364]

    ДНК по своей природе — биологический полимер, отличающийся высокой молекулярной массой и сложной линейной структурой. Макромолекула ДНК представляет собой длинную нераз-ветвленную цепь, остов которой состоит из чередующихся мономерных единиц—дезоксирибонуклеотидов. Нуклеотиды построены из трех компонентов пуринового или пиримидинового основания, пентозного сахара (дезоксирибоза) и фосфатных групп. Универсально распространенные азотистые основания, которых в молекуле ДНК обычно бывает четыре, следующие аденин и гуанин (производные пурина), цитозин и тимин (производные пиримидина). Для простоты их обозначают соответственно буквами А, Г, Ц и Т. Согласно модели Уотсона и Крика (1953) молекула ДНК состоит из двух полинуклеотидных цепей, образованных большим числом соединенных мелсду собой нуклеотидов. Связь между ними в цепи ДНК осуществляется в результате образования фосфатного мостика мелсду гидроксилами соседних дезоксирибозных остатков, к которым в качестве боковых радикалов присоединены азотистые основания. Сахара и фосфатные группы во всех нуклеиновых кислотах одинаковы, тогда как основания, соединенные водородными связями, меняются, причем аденин всегда присоединяется к тимину, а гуанин — к цитозину. Несмотря на то что в молекуле ДНК имеется только четыре азотистых основания, число их возможных комбинаций огромно. К примеру, участок нити ДНК фаговой частицы содержит 200 ООО нуклеотидов у высших растений это число, по-видимому, еще больше. [c.84]

    Можно ли считать препарат чистым Является ли он гомогенным по составу Например, содержит ли образец полимерные молекулы лишь одной молекулярной массы На этот вопрос часто можно ответить с помощью измерения размеров молекул, используя такие методы, как ультрацентрифугирование, электрофорез и хроматографию (которые будут подробно описаны в гл. Пи 12). Те же методы могут быть использованы и для выделения одного компонента из смеси макромолекул. При более детальном изучении гомогенности можно использовать также химический анализ, часто с применением спектроскопических измерений. Например, нередко возш1кают вопросы, не содержит ли препарат белка примеси нуклеиновых кислот, нет ли в нем ковалентно связанных с ним сахаров (и если есть, то сколько), состоит ли белок из одной непрерывной полипептидной цепи (и если это так, то какова ее длина). Отметим, что далеко не всегда стоит задавать вопрос об отсутствии загрязнения белка или нуклеиновой кислоты малыми молекулами, так как последние неизбежно присутствуют в препаратах. Большинство биополимеров — полиэлектролиты и поэтому находятся в окружении противоионов. Иногда бывает важно тщательно проконтролировать тип противоионов, которые присутствуют в образце. Очень часто для нормального функционирования макромолекулы бывает необходимо присутствие или отсутствие тех или иных малых молекул. [c.22]

    Двунитевые и однонитевые структуры. В поведении однонитевых (РНК, денатурированная ДНК) и двунитевых молекул нуклеиновых кислот многое определяется их размерами. В случае коротких полинуклеотидных цепей нативная двунитевая молекула имеет более жесткую структуру, чем таких же размеров однонитевая. Она труднее изгибается, проходя через пространственную сетку геля. В силу этого, например, относительно короткие двунитевые фрагменты ДНК при близких к нейтральному значениях pH будут отставать при электрофорезе в ПААГ от денатурированных ДНК такой же длины. Это будет иметь место даже для ДНК фага ФХ-174 с молекулярной массой 3,5 млн. дальтон. Однако для более крупных молекул ситуация может измениться на противоположную. Длинная двунитевая цепочка оказывается уже в целом довольно гибкой она продвигается через поры геля, как бы извиваясь ужом . Между тем однонитевая цепь той же длины сворачивается в хаотический клубок такого размера, что его продвижение в геле оказывается более затрудненным. В этом случае денатурированная ДНК при электрофорезе отстает от нативной. Такую картину, например, можно наблюдать для ДНК фага РМ2 с молекулярной массой 7 млн. [Johnson, Grossman, 1977]. [c.123]


    Во многих случаях электрофореза, описанных ниже, бывает желательно оценить молекулярные размеры (или молекулярную массу) фракционируемых нуклеиновых кислот. Для этой цели удобно иметь набор молекул того же типа, но известной длины. Проведя разделение смеси таких маркеров в отдельном треке пластины геля, можно сопоставить положение полосы исследуемой нуклеиновой кислоты в параллельном треке с расположением полос маркерного набора. Для РНК с этой целью используют тРНК, 5S, РНК,, рибосомальные и другие РНК известного размера. Для ДНК роль маркеров выполняет обычно набор фрагментов известной длины, полученных при расщеплении хорошо [c.125]

    Методика тритиевого обмена, в которой используется гель-проникающая хроматография на различных молекулярных ситах (рис. 8-21), состоит в следующем. К белку или нуклеиновой кислоте в растворе Н2О добавляют тритиевую воду. Через различные промежутки времени отбирают пробы и помещают их на колонку. Н О сильно задерживается колонкой, в то время как белки и нуклеиновые кислоты быстро проходят через нее. Используя колонку такой длины, что белок или нуклеиновая кислота проходят через нее за 10 с, концентрацию несвязанного понижают приблизительно в 10 раз. С колонки отбирают фракции и радиоактивность каждой определяют методом сцинтилля-дионного счета концентрацию белка или нуклеиновой кислоты определяют спектрофотометрически (гл. 14) или в некоторых случаях с помощью цветных реакций на белок. Следовательно, можно измерить число обменявшихся атомов водорода, приходящееся на единицу массы или на молекулу (если известна молекулярная масса) как функцию времени. [c.522]


Смотреть страницы где упоминается термин Нуклеиновые кислоты молекулярные массы и длина: [c.198]    [c.249]    [c.560]    [c.169]    [c.178]    [c.92]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярная масса

Молекулярный вес (молекулярная масса))

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте