Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты, диффузия при низких давлениях

    Молекулярно-кинетическая теория также позволяет делать предсказания относительно диффузии, вязкости и теплопроводности газов, т.е. так называемых транспортных свойств, проявляющихся в явлениях переноса. Каждое из этих явлений может условно рассматриваться как диффузия (перенос) некоторого. молекулярного свойства в направлении его градиента. При диффузии газа происходит перенос его массы от областей с высокими концентрациями к областям с низкими концентрациями, т.е. в направлении, обратном градиенту концентрации. Вязкость газов или жидкостей (иногда их обобщенно называют флюидами) обусловлена диффузией молекул из медленно движущихся слоев в быстро движущиеся слои флюида (и их торможением) и одновременной диффузией быстро движущихся молекул в медленно движущиеся слои (и их ускорением). При этом происходит перенос механического импульса в направлении, противоположном градиенту скорости движения флюида. Теплопроводность представляет собой результат проникновения молекул с большими скоростями беспорядочного движения в области с малыми скоростями беспорядочного движения молекул. Ее можно описывать как перенос кинетической энергии в направлении, противоположном градиенту температуры. Во всех трех случаях молекулярно-кинетическая теория позволяет установить коэффициент диффузии соответствующего свойства и дает наилучшие результаты при низких давлениях газа и высоких температурах. Именно эти условия лучше всего соответствуют возможности применения простого уравнения состояния идеального газа. [c.150]


    Исследуем температурную зависимость коэффициента проницаемости при достаточно низких давлениях, когда растворимость газов в матрице невелика, выполняется закон Генри, коэффициент диффузии не зависит от концентрации и взаимным влиянием компонентов разделяемой смеси можно пренебречь. [c.85]

    Согласно уравнениям (3.55) — (3.57), при малых давлениях коэффициент проницаемости определяется произведением коэффициентов диффузии 0 т(Т, С т-> 0) И растворимости аш Т, Р->-0). Ранее было показано, что для легких газов с низкой критической температурой растворимость невелика и слабо зависит от температуры, если энергетическое взаимодействие молекулы газа и элементов матрицы неспецифично (ДЯ 0). В данном случае сказанное относится к метану (Т>Тс = = 190,6 К), коэффициенты растворимости которого наименьшие для всех полимеров (см. табл. 3.3). [c.89]

    Исследование газопроницаемости пленок полимеров, находящихся в равновесии с сорбированными парами, показало, что при сорбции паров СеНи и U полиэтиленом низкой плотности наблюдается значительное повышение проницаемости полиэтиленовых пленок по отношению к азоту и кислороду . При этом значение коэффициентов газопроницаемости Р полиэтилена линейно возрастает с увеличением весовой концентрации сорбированного гексана, а значение энергии активации Ер остается приблизительно постоянным. Изменение значений Р обусловлено ростом коэффициента диффузии D, в то время как коэффициент растворимости газов а при сорбции пленкой органических растворителей существенно не изменяется. В системе гидрат целлюлозы — вода значение Р для О2 и N2 и в особенности для СО2 быстро возрастает с увеличением относительного давления паров воды. График зависимости Р для Oj от весовой концентрации воды в гидрате целлюлозы имеет два линейных отрезка, пересекающиеся в точке, отвечающей относительной влажности, равной 74%. На значения Р полиэтилена для О2, N2, СО2 относительная влажность газов не влияет. Предполагается, что сорбция паров воды не влияет на содержание кристаллической части и набухание происходит только в аморфных областях полимеров. Газопроницаемость смеси газов часто зависит от высокой растворимости одного из входящих в смесь газов. Так, исследование полиэтилена по отношению к смеси этана с бутаном показало что проницаемость смеси увеличивается с ростом концентрации бутана по сравнению с расчетной (по исходным коэффициентам Р) [c.172]


    В общем случае процесс фазового перехода в системе жидкость — пузырьки газа имеет нестационарный характер, так как концентрация газа, растворенного в жидкости, изменяется во времени при дегазации под вакуумом (или растворении пузырьков под давлением) и, прежде всего, в слое, прилегающем к границе раздела фаз [28, 35, 162]. Поэтому кинетику массообмена описывают с использованием второго закона Фика (1.32). При малой растворимости и относительно низких значениях коэффициента диффузии газа в жидкости нелинейность кинетической зависимости выражена слабо [24] и для упрощения описания процесса фазового перехода в таких системах используют уравнение (1.36). [c.133]

    В табл. 3.2 и 3.3 приведены данные для анализа температурной зависимости коэффициентов проницаемости и диффузии газов р полимерах для предельного случая низких давлений (Я->0). Для метана проницаемость растет с повышением температуры во всем исследованном диапазоне давлений для пропана в основном наблюдается обратная зависимость по мере снижения давления температурная зависимость проницаемости ослабляется и даже меняет направление. [c.88]

    Для определения коэффициентов диффузии в бинарных газовых системах при низких давлениях рекомендуется уравнение [7] [c.72]

    С повышением температуры растет средняя кинетическая энергия молекул и средняя скорость их теплового движения. Чем выше температура, тем больше коэффициент диффузии данного вещества. Скорость диффузии зависит от давления. При низких давлениях среднее число столкновений, испытываемых в единицу времени каждой молекулой, сравнительно мало, а длина свободного пробега молекул велика. Чем больше давление газа, тем больше число столкновений молекул, тем меньше длина их свободного пробега, тем более сложен и извилист путь каждой молекулы. Чем больше давление газа, тем больше вязкость среды, тем медленнее будет протекать в нем диффузия вещества и тем меньше коэффициент диффузии последнего. [c.423]

    К сожалению, это не распространяется на ректификацию под вакуумом (при давлениях ниже 10 Па) ввиду следующих причин. При понижении давления в колонне увеличивается скорость диффузии в паре, так как коэффициент диффузии в газах обратно пропорционален давлению. Это вызывает улучшение переноса примеси в паровой фазе. Отсюда следует, что, начиная с некоторого давления, скорость массообмена в ректификационной колонне будет лимитироваться диффузией в жидкой фазе и дальнейшее уменьшение давления не будет увеличивать скорость массо-обмена. Одновременно при понижении давления увеличивается скорость диффузии в паровой фазе вдоль оси колонны. В соответствии с этим вертикальный градиент концентрации в паровой фазе колонны падает и разделение смеси ухудшается. Далее, при понижении давления в колонне возрастает также линейная скорость движения пара, что приводит к резкому увеличению перепада давления между кубом и конденсатором колонны, вследствие чего в кубе не удается поддерживать низкое давление. В результате ректификация при давлении ниже (1—2)-10з Па обычно становится неэффективной. [c.101]

    До недавнего времени считалось общепринятым, что процесс обезуглероживания идет только на поверхности границ зерен. При этом вследствие создания градиента концентрации углерода в микрообъемах, внутри зерна происходит диссоциация цементита и выделившийся углерод диффундирует к пограничным участкам, где взаимодействует с водородом. Подтверждением этой точки зрения служило видимое отсутствие растрескивания внутри перлитного зерна. Однако наличие мелкодисперсного феррита после опытов и некоторых факторов при обезуглероживании стали в условиях повышенных температур и давлений водорода трудно объяснить, исходя из общепринятого механизма обезуглероживания. Например, сильное влияние давления водорода на скорость обезуглероживания (рис. 20), низкие значения коэффициентов диффузии углерода (табл. 7) в феррите при температурах 300-500 и быстрое обезуглероживание стали в этих условиях. [c.167]

    В сплавах с очень малым содержанием менее благородного легирующего элемента образование зародышей соответствующего более устойчивого оксида может быть подавлено окислением основного компонента и эти зародыши останутся в форме дискретных частиц, внедренных в окалину [75]. В подобных сплавах может происходить также внутреннее окисление менее благородного элемента, пока и поскольку концентрация растворенного компонента ниже критической величины [76]. Дополнительными факторами, способствующими этому внутреннему окислению, являются также малые коэффициенты диффузии растворенного компонента в сплаве и высокие парциальные давления кислорода в газовой фазе [76]. Однако в случае газовых смесей с очень низкой активностью кислорода неспособность сплава образовать защитную окалину с хорошей адгезией часто также приводит к внутреннему окислению [36—38]. При этом размеры, форма и распределение частиц внутреннего оксида зависят от сплава и конкретных условий, хотя, как правило, более устойчивым внутренним оксидам соответствуют частицы меньших размеров и все частицы стремятся сконцентрироваться на границах зерен [77, 78]. [c.22]


    Кнудсеновская диффузия протекает в тонких порах, причем коэффициент диффузии снижается прямо пропорционально уменьшению диаметра капилляра. Особое значение этот тип диффузии имеет для процессов, проходящих при низких давлениях, а под давлением около 29,4 МПа (300 кгс/см ) ока становится заметной лишь в норах размером порядка 10 см. [c.95]

    Большая часть исследований проводилась при условии, когда давление на стороне мембраны с низким его значением поддерживалось близким к О, так что р = О и с, = 0. Средний коэффициент диффузии при этом [c.311]

    Структура такого типа для катализаторов синтеза аммиака особенно целесообразна, если восстановление проводится ири относительно низком давлении, когда диффузия протекает в кнудсеновском или переходном режиме и эффективный коэффициент диффузии зависит от размера пор (см. стр. 48 сл.). [c.40]

    Максимальные отклонения от изотермического режима будут наблюдаться при высоких значениях эффективного коэффициента диффузии, теплового эффекта реакции и низкой теплопроводности катализатора. Повышение давления способствует увеличению отклонения от изотермического режима. Это объясняется увеличением диффузионного потока с ростом давления в тех случаях, когда диффузия сначала протекает в кнудсеновском или переходном режиме. [c.170]

    При низких давлениях и малом диаметре пор средняя длина свободного пробега молекул превышает диаметр пор и молекула чаще ударяется о стенки пор, чем сталкивается с другими молекулами газа. При ударах о стенки пор молекулы диффузно отражаются. Многие катализаторы, применяемые в промышленности, в том числе алюмосиликатные катализаторы крекинга, имеют поры диаметром менее 10 нм. Для реакций при атмос-сферном давлении на таких катализаторах можно ожидать влияния кнудсеновской диффузии на скорость процесса. Массоперенос путем кнудсеновской диффузии описывается уравнением (5.6) с использованием коэффициента кнудсеновской диффузии Ок.  [c.70]

    Случай I. Если в камерах высокого и низкого давления существуют условия турбулентности (отсутствуют продольные или поперечные градиенты концентраций) и если концентрации вещества в нисходящем потоке и в среде, перемещающейся через перегородку, равны, то относительный коэффициент диффузии г,- можно найти из соотношения а,- =У/Х Это соотношение имеет силу при некоторых значениях относительной (приведенной) величины давления рпр=р/я. С помощью уравнения [c.615]

    Поскольку константа скорости реакции возрастает с температурой значительно сильнее, чем коэффициент диффузии, повышение температуры благоприятствует переходу реакции во внутридиффузионную область. Следовательно, при повышении температуры влияние внутридиффузионного торможения, как и внешнедиффузионного, усиливается. При этом внутридиффузионное торможение начинает сказываться на наблюдаемой кинетике реакции при более низких температурах, чем внешнедиффузионное торможение, особенно, если диаметр пор достаточно мал (меньше 100 нм при атмосферном давлении) [3.43]. При наличии внутридиффу-зионного торможения квазистационарный режим не устанавливается.  [c.74]

    X, скорость процесса существенно зависит от начальной температуры жидкости То- При низкой температуре на входе скорость процесса определяется скоростью испарения с поверхности, поскольку давление паров летучего компонента мало. При этих условиях повышение температуры стенки увеличивает скорость массопереноса (рис. VII. 13). При высоких начальных температурах жидкости температура стенки оказывает относительно меньшее влияние. Когда начальная температура достаточна для обеспечения большой скорости испарения с поверхности, то скорость процесса лимитируется скоростью диффузии, летучего вещества к поверхности пленки, и дальнейшее повышение температуры жидкости или стенки практически не влияет на эффективность разделения. Дальнейшее увеличение интенсивности нагрева приводит к отрицательным последствиям, поскольку возрастает испарение менее летучих компонентов. Если процесс лимитируется диффузией через пленку жидкости, то повышение коэффициента диффузии увеличивает эффективность разделения (рис. УП.И). Последняя возрастает также с уменьшением толщины пленки. Поэтому целесообразно поддерживать толщину пленки на минимальном уровне обеспечивающем ее стабильность. [c.249]

    Скорости движения молекул в газах и жидкостях почти одинаковы, однако в газе молекулы проходят значительно большее расстояние, прежде чем столкнуться (вследствие более низкой плотности), поэтому коэффициенты диффузии в газе в 10 —10 раз выше, чем в жидкости. Этот факт получает отражение в пропорциональности между Dg и величиной, обратной давлению в системе. Результатом любого диффузионного процесса с участием молекул, имеющих различную массу, является массообмен через некоторую плоскость в системе, причем наличие градиента плотности усложняет процесс конвективного смешивания. В газах этот эффект мал и коэффициент диффузии почти не зависит от концентрации вещества. Имеющиеся экспериментальные данные показывают, что величина Dg с изменением состава системы изменяется на 2—9% в зависимости от разницы молекулярных весов компонентов [2]. Это обстоятельство делает возможным использование в ГХ коэффициентов диффузии в газовой фазе Dg для надежного определения диффузионных эффектов. [c.175]

    Каждая жидкость имеет характеристическую температуру (критическую температуру) и характеристическое давление (критическое давление), при превышении которых свойства жидкой и газообразной фаз становятся неразличимыми. В сверхкритическом состоянии жидкость имеет исключительно низкую вязкость, а поэтому может стать значительно лучшим растворителем. В связи с этим применение сверхкритических жидкостей в капиллярной хроматографии в настоящее время рассматривается как перспективный метод разделения сложных нелетучих смесей. Поскольку коэффициенты диффузии и вязкости сверхкритических жидкостей более благоприятны для выполнения эксперимента, хроматографическое разделение значительно улучшается. Более того, оптическая прозрачность сверхкритических жидкостей позволяет использовать некоторые оптические методы обнаружения. [c.243]

    Имеется много примеров использования этого подхода к разработке полезных для расчетов корреляций. Несколько методов определения коэффициентов диффузии в бинарных газовых смесях при низких давлениях представляют собой эмпирические модификации уравнения, полученного на основе простой кинети-.ческой теории. Почти все более или менее хорошие расчетные методики основаны на корреляциях, разработанных подобным образом. [c.14]

    Низкие значения скорости могут наблюдаться либо во внутридиффузион-ной области, либо в области чистой химической кинетики. Первый случай отмечается, если пористость гранул катализатора мала, гранулы большие, а давление высокое (и, следовательно, коэффициент диффузии невелик). Во втором случае имеет место чистая кинетическая область. Большинство катализаторов работает во внутридиффузионной области, некоторые — на границе с внешнедиффузионной областью, другие — в области химической кинетики. Наивысшиё активности (отмеченные на кривых) находятся в верхней части графика слева, что показывает желательность высокого соотношения объема каталитического вещества и объема носителя, малых размеров кристаллов активной фазы, малого размера и оптимальной пористости гранулы катализатора. [c.36]

    При 300 и 380°С наблщцается кинетический режим, а при более высоких температурах - внутридиффузионный режим. Интересно отметить, что при диффузионном режиме изменение давления не сказывается на доле работающего катализатора. Как видно из рис.13, при температуре 350°С критический радиус равен 0,4 при любых давлениях и Это объясняется тем, что с увеличением давления концентрация реагента возрастает, а эффективный коэффициент диффузии падает примерно в равной степени, так как он определяется в данном случае коэффициентом объемной диффузии. Толщина работающего слоя эерна очень сильно зависит от температуры в области низких температур (до 300°С) и очень слабо в области температур выше 400°С, где толщина работающего слоя менее Ъ% радиуса зерна (рис.14). [c.81]

    В области течения, где стенка канала сухая, механизм теплоотдачи резко меняется. Обычно коэффициент теплоотдачи от стенки к пару относительно низок, за исключением случаев при больших массовых скоростях теплоноси-геля, получаемых при высоких давлениях (например, пар при] 140 атм). При более низких давлениях количество передаваемого тепла связано с испарением капель жидкости, соударяющихся со стенкой. Таким образом, при низких давлениях главным фактором, от которого зависит коэффициент теплоотдачи, является не диффузия через пограничный слой, а скорость, с которой капли жидкости поступают из ядра потока к стенке. Работа с испарителями фреона пока-шла, что витая резиновая вставка, например аналогичная показанной на рис. 5.5, или другие тур-булизирующие устройства могут способствовать отбрасыванию капель к стенке и осушению тумана. [c.91]

    С гавышение.м температуры увеличивается наклон линии равновесия, так как растет парциальное давление в состоянии равновесия с данным раствором, поэтому разность У — У будет уменьшаться, а величина Л г увеличиваться (рис. УП-19). Повышение гемпературы вызывает также увеличение вязкости газа и толщины пограничного слоя. г. По уравнению (УП-27) коэффициент диффузии О пропорционален Т следовательно, отношение 01Т будет пропорционально 7 . Но в итоге, как показывает опыт, ббльплим оказывается влияние вязкости, и коэффициент несколько уменьшается с ростом температуры. Поэтому выражение перед знаком интеграла (ВЕП) увеличивается при повышении температуры. В результате высота абсорбера й растет с увеличением температуры. Таким образом, процесс абсорбции хорошо растворимого компонента следует проводить при низкой температуре. [c.578]

    Успех хроматографического разделения смеси веществ зависит не только от селективности выбранных фаз, но и от эффективности колонки. Последняя связана с такими физическими свойствами применяемых жидкостей, как вязкость и коэффициент диффузии. Подвижные фазы в ЖЖХ должны обладать относительно низкой вязкостью, чтобы давление, необходимое для продавливания раствора через слой носителя в колонке, было минимальным. Поэтому в качестве подвнжных фаз рекомендуется применять жидкости с малой молек лярной массой. [c.216]

    Например, критической точке диоксида углерода соответствует давление 74 бар и температура 31 °С. Ниже этой температуры СОг уже при умеренно высоком давлении (например, при давлении 65 бар и температуре 25 °С) представляет собой обычную жидкость. При температуре выше 31 °С перевести СОг в жидкое состояние невозможно даже при сколь угодно большом давлении. В таких условиях СОг существует в виде НКЖ, которая ведет себя как газ, но при достаточно высоком давлении по плотности может превосходить жидкий СОг. По своим свойствам надкритический СОг резко отличается от жидкого диоксида углерода он обладает большей сжимаемостью, более высоким коэффициентом диффузии, более низкой вязкостью и меньшим поверхностным натяжением. С помощью некоторых эмпирических параметров пол5 рности растворителей (см. гл. 7) было показано, что надкритический СОг во многих отношениях подобен углеводородному растворителю с очень низкой поляризуемостью [759]. [c.399]

    Согласно уравнению (2.2.1.6), коэффициент диффузии в газах обратно пропорционален давлению, что соответствует экспериментальным данным при низких и умеренных давлениях. Температурная зависимость коэффициента диффузии при р = onst определяется соотношением [3] [c.476]

    Образование переходного слоя может рассматриваться как возникновение третьей фазы в смеои вследствие локальной диффузии на границе раздела и других причин. Действительно, наличие такого слоя обнаружено методами ДТА [414] и радиотермолюминесценции [415] для смесей эластомеров. Для композиции на основе двух кристаллических полимеров метод радиотермолюминесценции был применен авторами работы [416]. Исследование смеси полиэтилена низкого давления с сополимером формальдегид — диоксолан в широком диапазоне составов показало, что при малых добавках сополимера (до 2%) максимум свечения, отвечающий температуре стеклования ПЭ, смещается в сторону более низких температур, а в области 5—40% сополимера положение максимума остается постоянным. При малых добавках ПЭ к сополимеру (до 1%) также наблюдается сдвиг максимума, характерного для сополимера. Добавки 10% сополимера к ПЭ и 5% ПЭ к сополимеру приводят к появлению в системе новых максимумов. Полученные данные указывают на то, что при смешении кристаллических полимеров происходят структурные изменения в межфазных областях, обусловленные взаимодействием компонентов в пределах аморфных областей. При малых добавках наблюдается один смещенный пик свечения. При повышении содержания второго компонента образуются две аморфные фазы, что приводит к появлению двух смещенных температур стеклования. Как видно, взаимное влияние компонентов в смеси может приводить к тому, что 7 с одного полимера в смеси с другим повышается по сравнению с наблюдаемой для чистого полимера (ПС в смеси с ПБ, ПВА, ПВХ и др.). Во всех исследованных случаях ПС преобладал в смеси, т. е. является непрерывной фазой. Величина смещения Тс зависит от природы компонентов и возрастает с ростом разности коэффициентов термического расширения [417, 418]. [c.205]

    При обработке исходных растворов, содержащих растворенные вещества с низким значением коэффициента диффузии, концентрационная поляризация может стать значительной независимо от типа потока (ламинарного или турбулентного). Как показано на фиг, 14, кривые изменения потоков через ультрафильтрационные мебраны трех разных типов при повышении давления становятся прямыми линиями при значениях, которые существенно ниже значений потоков для чистой воды. Макромолекулы и коллоиды, находящиеся в обрабатываемой ультрафильтрацией жидкости, скапливаются у поверхности мембраны и образуют липкий слой геля, примыкающий к мембране. Аналогичные явления наблюдаются и при концентрировании с помощью ультрафильтрациониых или обратноосмотических мембран пищевых продуктов. [c.181]

    Фазы, богатые тяжелым и легким компонентом Среда, продиффун-дировавшая в область низкого давления Непродиффундиро-вавшая среда, находящаяся в области высокого давления Относительный коэффициент диффузии /у) [c.616]

    Эффективность работы ДИК-лазера зависит от многих параметров способа накачки, давления и температуры рабочего газа, поляризации излучения накачки, параметров оптического резонатора, конкретный выбор которых определяется молекулярными характеристиками активной среды. Важнейшую роль играют скорости врап ательной и колебательной релаксаций, параметры насыщения переходов с поглощением и излучением. При недостаточно быстрой колебательной релаксации (эффект узкого горла ) инверсия заселенностей вращательных уровней в возбужденном колебательном состоянии будет существовать лишь в течение короткого промежутка времени после начала накачки, так как в результате вращательной релаксации, скорости которой выше скоростей колебательной релаксации, среди вращательных уровней быстро установится больцмановское распределение заселенностей. Возможно, в значительной степени с этим неучтенным должным образом в теории эффектом узкого горла связано расхождение в несколько раз эконериментальных и расчетных величин /Сус [12, 17]. Более полный учет процессов колебательной релаксации молекул и некоторых других эффектов приводит в случае непрерывного лазера на фторметане к лучшему согласию экспериментальных и теоретических значений его выходных параметров [29] (одна из программ расчета параметров ДИК-лазеров на ЭВМ описана в [30]). При низких давлениях рабочего газа и насыщении возбуждаемого перехода коэффициент усиления мал из-за малой абсолютной величины инверсии уровней. С ростом давления эта величина растет, однако растет и эффективность столк-новительной вращательной релаксации, приводящей к термализа-ции вращательных уровней. Из-за столкновительного уширения линии излучения уменьшается сечение вынужденного испускания. Кроме того, уменьшается скорость диффузии молекул, играющей важную роль в процессах колебательной релаксации. В результате Кус при давлениях выше некоторого оптимального начинает падать. Оптимальное давление большинства ДИК-лазеров составляет 4-ь40 Па, причем в одном и том же газе оптимальные давления для генерации на разных длинах волн обычно различны. [c.174]


Смотреть страницы где упоминается термин Коэффициенты, диффузия при низких давлениях: [c.443]    [c.138]    [c.68]    [c.72]    [c.9]    [c.100]    [c.309]    [c.220]    [c.57]    [c.667]    [c.217]    [c.407]    [c.350]    [c.468]   
Массопередача (1982) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия коэффициент диффузии

Коэффициент диффузии



© 2025 chem21.info Реклама на сайте