Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Датчик вольтамперометрический

    ОБЩАЯ ТЕОРИЯ МЕТОДОВ ВОЛЬТАМПЕРОМЕТРИИ И МОДЕЛИ ВОЛЬТАМПЕРОМЕТРИЧЕСКИХ ДАТЧИКОВ [c.268]

    Переходя к рассмотрению вопросов теории вольтамперометрии, важно отметить, что она, с одной стороны, представлена большим разнообразием методов и типов используемых электродов, а с другой стороны, процессы, происходящие в электрохимической ячейке, имеют, в основном, общий характер. При этом с точки зрения аналитических задач важно установить теоретические соотношения, определяющие функциональные закономерности вольтамперометрического датчика, т.е. соотношения, связывающие потенциал индикаторного электрода, ток электрохимической реакции определяемого вещества и его количественное содержание в растворе. Для получения более адекватной математической модели, позволяющей, кроме всего прочего, оценивать метрологические возможности, сравнительные достоинства и недостатки вольтамперометрических методов, нужно наряду с основными функциональными зависимостями учитывать соотношения, описывающие источники основных помех и искажений аналитического сигнала. Имеются в виду, прежде всего, ток заряжения емкости двойного слоя, омическое падение напряжения в объеме раствора, а также шумы, возникающие в ячейке и измерительной аппаратуре. [c.269]


    МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ВОЛЬТАМПЕРОМЕТРИЧЕСКИХ ДАТЧИКОВ [c.295]

    Любая математическая модель состоит из совокупности количественных соотношений, описывающих с определенной идеализацией основные свойства объекта. Рассмотрим эти соотношения для модели вольтамперометрических датчиков, удовлетворяющей исходным условиям, изложенным в разделе 8.2.1. [c.295]

    Фарадеевский ток. Основными теоретическими соотношениями для математической модели вольтамперометрических датчиков являются уравнения, описывающие взаимосвязь фарадеевского тока, потенциала электрода и концентрации электроактивных веществ (деполяризаторов). При произвольной степени обратимости электрохимической реакции для одного деполяризатора таким соотношением является уравнение (8.98), а для полностью обратимой или полностью необратимой реакции - уравнения (8.94), (8.86) или (8.99), (8.100). При необходимости моделирования датчиков, содержащих несколько деполяризаторов, достаточно сложить соответствующее число однотипных уравнений, каждое из которых учитывает свойства одного деполяризатора. [c.295]

    Эквивалентный ток шума. При определении малых содержаний определяемых веществ, когда измерительная аппаратура работает с максимальной чувствительностью, измеряемый сигнал кроме составляющих, обусловленных электрохимической реакцией и зарядом емкости двойного слоя, содержит флуктуационную помеху. Очевидно, что в тех случаях, когда нужно теоретически оценить вместе с полезным сигналом общий уровень помех, влияющих на предел обнаружения конкретных вольтамперометрических методов, необходимо, чтобы модель датчика воспроизводила наря- [c.296]

    Система уравнений, описывающая фарадеевский ток / (8.98), емкостный ток /с (8.104), шумовой, /шэ и общий ток /г датчика (8.107), а также приложенное к датчику напряжение (8.109) составляет общую математическую модель вольтамперометрических датчиков. Введение этой системы уравнений в компьютер позволяет на основе ее численного решения выявить основные закономерности и характеристики различных вольтамперометрических методов и используемых в них датчиков при заданных конкретных параметрах и режимах работы. [c.300]

    Полезность электрических моделей вольтамперометрических датчиков заключается в следующем. [c.300]

    Электронные эквиваленты вольтамперометрических датчиков. Нелинейные аналоговые модели, позволяющие количественно и в реальном масштабе воспроизводить основные электрические свойства вольтамперометрических ячеек, в общем случае имеют довольно сложную структуру. Поэтому мы ограничимся рассмотрением сравнительно простого варианта электронного эквивалента трехэлектродной ячейки со стационарным индикаторным электродом, на котором может протекать обратимая электрохимическая реакция при контролируемом изменении потенциала Е 1) и С°кеа = 0. Для такого случая электрические свойства ячейки можно описать с помощью рассмотренных ранее соотношений. [c.308]


    Аппаратурные методы вольтамперометрии основаны на использовании разнообразных форм электрического воздействия на вольтамперометрический датчик в сочетании с соответствующими способами обработки сигнала-отклика. Реализация таких, часто достаточно сложных, форм электрического воздействия и обработки сигналов требует применения соответствующей электронной аппаратуры, а в последнее время и средств вычислительной техники. [c.314]

    В зависимости от измеряемого параметра, характеризующего чувствительность датчика к определенному компоненту, выделяют электрохимические (потенциометрические, вольтамперометрические, амперометрические, кулонометрические, кон-дуктометрические), оптические (спектрофотометрические, люминесцентные), чувствительные к изменению массы (пьезоэлектрические и акустико-поверхностно-волновые), магнитные и термометрические датчики. Дополнительная классификация химических сенсоров проводится по определяемому компоненту пробы. Соответственно сенсоры делятся на ионные, молекулярные, газовые, биосенсоры, включая ферментативные и иммуносенсоры. Учитывая сложность классификации (полная классификация и история создания сенсоров может быть найдена в работе [330]) и разнообразие химических сенсоров, в данной главе представлены лишь отдельные группы сенсоров, в которых существенную роль играет модифицирование поверхности неорганических носителей. [c.468]

    Поскольку в основе электрохимических процессов лежат общие закономерности, связанные с напичием электрических потенциалов, электрических зарядов и электрических токов, то вполне естественно стремление представить вольтамперометрические датчики в виде электрической модели (эквивалентной схемы), состоящей из общеизвестных элементов электрических (электронных) цепей. Разумеется, что такая модель должна в реальном или ином масштабе количественно воспроизводить основные электрические характеристики электрохимической системы. [c.300]

    Поскольку для визуальной регистрации вольтамперометрического сигнала при быстрой развертке потенциала обычно используют электронно-лучевую (осциллографическую) трубку, хроновольтамперометрические методы иногда называют осцилло-графической полярографией. Исторически в первых видах осциллополярографии для электрического воздействия на датчик использовали заданный ток синусоидальной или треугольной формы. Однако такая разновидность хроновольтамперометрии не получила щирокого распространения. [c.319]

    Кадмий мг/дм 0,001 Вольтамперометрический анализатор Экотест-ВА в комплекте с импрегниро-ванным графитовым или углеродным микроэлектродом. Возможна комплектация электрохимическим датчиком Модуль ЕМ-04 0,0005-0,5 [c.552]

    Концентрация растворимого ферментного электрода (гл. 1) впервые была выдвинута Кларком и Лайонсом [6] в 1962 г. Однако лишь в 1971 г. была создан [50] первый работающий ферментный электрод на основе глюкозооксидазы, иммобилизованной в геле на поверхности полярографического кислородного электрода, который позволяет определять глюкозу в биологических жидкостях и тканях. Ферментные электроды могут работать и как вольтамперометрические, и как амперометрические датчики, то есть измеряется ток при приложенном постоянном напряжении. В 1969 г. Гилболт и Монталвв [19] предложили первый потенциометрический (измеряется потенциал системы без наложения внешнего напряжения) ферментный электрод для определения мочевины. С тех пор в литературе описано более ста различных электродов данные [c.120]

    В классических электрохимических работах по анализу биологических сред использовали ртутный капающий электрод [13]. Однако в последние годы при разработке биосенсоров выбор пал на твердые электроды из Pt, Au и различных форм углерода. Основной проблемой при использовании твердых электродов является получение поверхностей с воспроизводимыми свойствами. Предварительная обработка электродов, включающая полировку, тепловую обработку и попеременное наложение на электрод нескольких различных потенциалов, способствует увеличению как воспроизводимости, так и величины сигнала электрода. Большинство голых электродов, однако, не дает воспроизводимого сигнала после продолжительной (в течение нескольких часов) выдержки в растворах белков. Чаще всего с помощью амперометрических биосенсоров определяют кислород, используя для этой цели электрод Кларка [15]. Пионерские работы Адамса [1, 2] послужили импульсом для развития методов контроля in vivo катехоламинов и других важных нейроактивных веществ. Электроды, регистрирующие сигналы нейротрансмиттеров в хвостатом ядре мозга крысы, должны не только обеспечивать быстрый отклик, но и быть настолько миниатюрными, чтобы было возможно пространственное разрешение исследуемых процессов. Уайтман и сотр. [37, 43] разработали ряд микроэлектродных датчиков из углеродного волокна и Pt или Au проволоки. Диаметр электродов составляет менее 0,5 мкм. Такая малая площадь поверхности электрода позволяет, как правило, измерять токи в наноампер-ном диапазоне. Поскольку отношение характеристической площади поверхности электрода к толщине диффузионного слоя мало, вольтамперометрический сигнал микро- [c.144]



Смотреть страницы где упоминается термин Датчик вольтамперометрический: [c.263]    [c.268]   
Основы современного электрохимического анализа (2003) -- [ c.295 , c.300 ]




ПОИСК





Смотрите так же термины и статьи:

Датчик

Модель вольтамперометрического датчика

Модель вольтамперометрического датчика математическая

Модель вольтамперометрического датчика электрическая

Общая теория методов вольтамперометрии и модели вольтамперометрических датчиков



© 2025 chem21.info Реклама на сайте