Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия электрохимические основы

    Электрохимическая коррозия встречается чаще других видов коррозионного разрушения и наиболее опасна для металлов. Она может протекать в газовой атмосфере, когда на поверхности металла возможна конденсация влаги (атмосферная коррозия), в почвах (почвенная коррозия), в растворах (жидкостная коррозия). Электрохимическая коррозия подчиняется законам электрохимической кинетики. Скорость ее можно определить на основе закона Фарадея. [c.486]


    Шаталов А. Я. Электрохимические основы теории коррозии металлов. Изд-во Воронежского госуниверситета, 1973, стр, 32—38. [c.93]

    Ш аталов Д. Я. Электрохимические основы теории коррозии. Изд-во Воронежского госуниверситета, 1971, стр. 39—81. [c.193]

    ЭЛЕКТРОХИМИЧЕСКИЕ ОСНОВЫ ТЕОРИИ КОРРОЗИИ МЕТАЛЛОВ [c.1]

    Шаталов А. Я. Электрохимические основы теории коррозия металлов, Изд-во ВГУ, Воронеж, 197.1, стр. 180. [c.2]

    Анатолий Яковлевич Шаталов ЭЛЕКТРОХИМИЧЕСКИЕ ОСНОВЫ ТЕОРИИ КОРРОЗИИ МЕТАЛЛОВ [c.179]

    Согласно современным представлениям [214, 128, 578, 494], металлы в растворах электролитов растворяются преимущественно по электрохимическому механизму. Подход к анодному растворению металлов и коррозии с единых позиций теории электрохимической кинетики, применение для изучения коррозии электрохимических методов исследования углубили и расширили теоретические представления об этих процессах, и на их основе стали возможны предварительные оценки коррозионной стойкости металлов и сплавов в различных условиях, разработки принципов коррозионной защиты материалов. Однако коррозионная наука в последние три десятилетия развивалась в основном применительно к водным растворам. Особенности процессов анодного растворения и коррозии металлов в органических электролитах изучены недостаточно, хотя необходимость таких сведений в связи со всевозрастающей ролью органических растворителей в качестве технологических средств очевидна. [c.106]

    В настоящей монографии мы стремились в первую очередь раскрыть электрохимическую основу процессов селективной коррозии, которую следует считать в них доминирующей, в то время как другие факторы (тип химической связи, кристаллическая решетка сплава) могут рассматриваться лишь в роли подчиненных-  [c.4]

    Таким образом, при расчетах скоростей коррозии на основе представлений электрохимической кинетики необходимо принимать во внимание, что скорость той или иной реакции различна на отдельных участках, а на некоторых из них одна из реакций может вообще не протекать. Между тем учет этих обстоятельств очень затруднен. Отметим, кстати, что даже для подсчета суммарного коррозионного эффекта необходимо принимать во внимание, например, что перенапряжение водорода или перенапряжение ионизации металла неодинаковы на различных участках. [c.83]

Таблица 5. Рациональная классификация методов защиты металлов от коррозии на основе электрохимической теории Таблица 5. Рациональная <a href="/info/1515372">классификация методов защиты металлов</a> от коррозии на основе электрохимической теории

    ЭЛЕКТРОХИМИЧЕСКИЕ ОСНОВЫ ДЕЙСТВИЯ ИНГИБИТОРОВ КИСЛОТНОЙ КОРРОЗИИ СТАЛИ [c.129]

    Контактная коррозия — электрохимическая коррозия, вызванная контактом металлов, имеющих разные стационарные потенциалы в данном электролите. При этом коррозия металла с более отрицательным потенциалом обычно усиливается, а коррозия металла с более положительным потенциалом замедляется или полностью прекращается. Контактная коррозия часто наблюдается в морской воде, имеющей хорошую электропроводность. Она может протекать и в атмосферных условиях — максимальная в месте непосредственного контакта разнородных металлов. Этот вид коррозии возникает также, когда металл имеет на поверхности пористое металлическое покрытие, отличающееся по своему потенциалу от потенциала металла основы. [c.41]

    В соответствии с этим гл. I посвящена проблеме межионного притяжения в растворе, которая была в центре внимания электрохимиков в течение 30-х годов текущего столетия и интерес к которой недавно снова возродился в связи со значительными успехами теории концентрированных растворов. Ионный обмен— область важного практического значения — имеет в большой степени электрохимическую основу, контуры которой в настоящее время, по-видимому, достаточно определились, и представляется оправданным обсуждение этих вопросов в гл. П. В последние годы на исследование расплавленных электролитов были направлены значительные усилия ученых, чему способствовало то обстоятельство, что атомной промышленности требовались данные о состоянии тел при высоких температурах некоторые результаты изучения данной проблемы описываются в гл. III. В гл. IV обсуждаются механизмы анодных электродных процессов, знание которых необходимо для фундаментального понимания коррозии. [c.9]

    Шаталов А. Я. Электрохимические основы теории коррозии металлов. [c.212]

    Механизм электрохимической коррозии. В основе первой электрохимической теории коррозии лежало представление об электрохимической неоднородности корродирующей поверхности металла. Металлы состоят из беспорядочно ориентированных кристаллитов (или зерен) с хорошо выраженной границей. Примеси при затвердевании металлов концентрируются на границах зерен. Еще более неоднородна поверхность технических металлов и их сплавов. В ней можно обнаружить различно ориентированные кристаллиты, шлаковые включения, межкристаллитное вещество. На поверхности могут оказаться окисные пленки. В случае гетерогенных сплавов (когда низка растворимость легирующих добавок и их соединений с металлом — основой) отдельные кристаллиты отличаются по химическому составу (рис. 70). [c.224]

    Имея более отрицательный потенциал, чем железо, цинковое покрытие является анодом по отношению к железу и таким образом защищает сталь от коррозии электрохимически. При этом в образующейся гальванической паре цинк — железо цинковое покрытие подвергается растворению с образованием продуктов коррозии. Поэтому металл основы не подвергается коррозии. [c.5]

    Из рассмотрения механизма морской коррозии на основе современной электрохимической коррозии [4—9] можно сделать такие выводы  [c.406]

    Теория электрохимической коррозии металлов достигла той стадии развития, когда стали возможны и необходимы обобщения с применением математических формулировок и количественных расчетов. Основы таких расчетов изложены в данной главе. [c.265]

    Отдельно полученные анодные и катодные поляризационные кривые еще не описывают скорости коррозионного процесса. Коррозионный процесс могут характеризовать построенные на основе поляризационных кривых поляризационные диаграммы коррозии. Для перехода от поляризационных кривых к поляризационным диаграммам коррозии необходимо, чтобы площади анода и катода были известны. Построение поляризационных диаграмм коррозии основано на том, что в любой электрохимической системе силы анодного и катодного токов должны быть равны. [c.50]

    Электрохимические процессы имеют большое практическое значение. Электролиз используется в металлургии легких и цветных металлов, в химической промышленности, в технологии гальванотехники. Химические источники тока широко применяются в быту и промышленности. Электрохимические процессы лежат в основе многих современных методов научного исследования и анализа. Новая отрасль техники — хемотроника — занимается созданием электрохимических преобразователей информации. Одной из важнейших задач электрохимии является изучение коррозии и разработка эффективных методов защиты металлов. В неравновесных условиях в растворе электролита возникают явления переноса вещества. Основные виды переноса диффузия — перенос вещества, обусловленный неравенством значений химических потенциалов внутри системы или между системой и окружающей средой конвекция — перенос вещества под действием внешних механических сил миграция — перенос заряженных частиц в электрическом поле, обеспечивающий электрическую проводимость электролитов. [c.455]


    Ввиду того, что коррозия включает химические превращения, для лучшего понимания коррозионных реакций необходимо знать основы химии, и особенно электрохимии, так как коррозионные процессы по большей части являются электрохимическими. Поскольку структура и состав металла зачастую определяют коррозионное поведение, надо быть знакомым с основами металлургии. Следовательно, химия и металлургия составляют фундамент при изучении коррозии, так же как биология и химия — при изучении медицины. [c.16]

    В последние годы к нефтяным маслам различного назначения предъявляют повышенные требования по защитным свойствам. В основе высокого защитного действия лежит способность масел быстро вытеснять воду с поверхности металла, удерживать ее в объеме смазочного материала и образовывать на нем прочные адсорбционные и хемосорбционные пленки, препятствующие развитию электрохимических процессов. Базовые нефтяные масла не способны длительно защищать металлы от электрохимической коррозии. Их защитные овойства улучшают введением 3—5% ингибиторов коррозии (окисленных парафинов и церезинов, нитрованных масел, сульфонатов, сукцинимидов и др.). [c.37]

    Приведены основные сведения о коррозионных процессах,происходящих при транспорте и хранении нефти, газа и нефтепродуктов. Изложены теоретические основы электрохимической коррозии подземных стальных сооружений и методы защиты от нее. Во 2-м издании (1-е изд. - 1981) особое внимание уделено использованию методов защиты от коррозии в поле блуждающих токов электрифицированного транспорта, выбору ингибиторов коррозии. [c.239]

    Шаталов А. Я. Электрохимические основы коррозии металлов. Изд-во боцонежского госуниверситета, 1971, стр. 3—38. [c.61]

    ЛУЖЕНИЕ — нанесение на поверхность металлических изделий тонкого слоя олова. Оловянные покрытия (толщиной 0,2 — 10 мкм) защищают изделия из стали, меди, меди сплавов и др. от коррозии металлов. На др. изделия, нанр. из титана и титана сплавов, олово наносят перед пайкой мягкими припоями, а также для снижения сопротивления деформированию при обработке давлением. В некоторых случаях Л. дает возможность защищать участки стальных изделий от диффузии азота при азотировании, предохранять медные изделия от разрушающего действия серы при гуммировании. Пористость оловянных покрытий зависит от способа нанесения и толщины слоя олова напр., при элект-тролитическом и горячем Л. жести при толщине 0,2—2,5 мкм она составляет от 10 до 1 поры на 1 см поверхности, при толщине более 3 мкм образуется практически бес-пористоо покрытие. Пористость покрытий на изделиях, находящихся во влажной воздушной среде или в различных неорганических средах, должна быть минимальной, поскольку в этих условиях покрытие является катодным и каждая пора становится очагом интенсивной коррозии металла основы. Пористость покрытий, взаимодействующих с растворами многих органических кислот (напр., щавелевой, лимонной, яблочной), вызывает растворение нетоксичного олова, к-рое является в данных условиях анодным и захцища-ет изделия от коррозии электрохимически. Чтобы затормозить растворение олова и в определенной степени ослабить действие на него органической среды, такие аокры-тия дополнительно лакируют. [c.716]

    Дпсульфид молибдена и композиции на его основе проявляют коррозионную агрессивность. Сухая смазочная пленка дисульфида молибдена не защищает металлические поверхности от коррозии. Электрохимическая коррозия некоторых металлов в присутствии дисульфида молибдена во влажной атмосфере усиливается, что иногда сопровождается образованием сероводорода. Следует учи- [c.67]

    Электрохимические основы коррозии. Если железо, алюминий или цинк поместить в воду, то в присутствии кислорода происходит коррозия этих металлов yмдiapныe уравнения происходящих реакций могут быть представлены в следующем виде  [c.465]

    Скорость коррозии электрохимически полированной пружинной стали 60С2 в атмосфере 98 % относительной влажности и температуре 40 °С в 1,5—2 раза ниже, чем полированной механически (рис. 3.4 [27]). При электроосаждении гальванических покрытий на электрохимически полированную поверхность металла-основы формируются более мелкокристаллические и малопористые осадки, возрастает их стойкость против механического износа (рис. 3.5 [26]). Благодаря этому толщина серебряных покрытий, используемых для антикоррозионной защиты, в ряде случаев может быть уменьшена на 20—25 %, а используемых для работы в условиях фрикционного износа, например на электрических контактах,— на 10—15 %. Повышаются предел упругости и релаксационная стойкость пружинных сплавов. Снижается наводороживание стальных электрохимически полированных пружин при последующем цинковании. Предел выносливости нейзильбера толщиною 0,3 мм — характеристики во многом определяющей долговечность работы деталей, в результате электрохимического полирования увеличивается, по сравнению с исходным состоянием, на 56 %, а при последовательной термообработке и полировании — на 84 %, в то время, как применяемый обычно отжиг повышает предел выносливости лишь на 40 %. Специфичность влияния электрохимического полирования, по сравнению с другим способом снятия внешнего слоя металла — химическим травлением хорошо видна по изменению коэрцитивной силы электротехнической стали (рис. 3.6 [26]). При одинаковой толщине растворенного слоя металла в первом случае коэрцитивная сила снижается почти на 80 % по отношению к исходному значению, а во втором—лишь на 35—40%. Очевидно, что улучшение электромагнитных и некоторых других характеристик металла связано 72 [c.72]

    Резкое улучшение защитной способности смазок достигается при введении в них ингибиторов коррозии, тормозящих электрохимические коррозионные процессы. Ингибиторы атмосферной коррозии металлов делятся на водо-, водомасло- и маслорастворимые. В смазки добавляют в основном маслорастворимые ингибиторы коррозии— окисленные петролатум и церезин, среднемолекулярные сульфонаты кальция, нитрованный окисленный петролатум, амины, комплексные соединения сульфокислот, СЖК и аминов, эфиры алкенилянтарного ангидрида, нитрованные масла и др. Маслорастворимые ингибиторы состоят из высокомолекулярного углеводородного радикала, обеспечивающего растворимость всей молекулы в масле, и функциональной группы (или нескольких групп), обеспечивающей защитные свойства данного соединения. Наиболее эффективны кальциевые, алюминиевые и свинцовые соли сульфо- и нитросоединений среднего молекулярного веса. Маслорастворимые ингибиторы резко уменьшают влагопроницаемость смазочных пленок, способны вытеснять с поверхности металла воду и включать ее в свою структуру. В последнее время широко применяют маслорастворимые ингибиторы коррозии на основе нитрованных и сульфированных продуктов. Нитрованные масла являются основными компонентами защитных смазок НГ-204 и НГ-204у. Разработаны высокоэффективные ингибиторы коррозии АКОР-1, АКОР-2, КП, БМП, ИНГА-1 и ИНГА-2. [c.135]

    Важным параметром, характеризующим электрохимические функции металлического покрытия, является значение его стационарного потенциала по отношению к стационарному потенциалу защищаемого металла, другими словами - соотношение их потенциалов. Это определяет возможность протекторной защиты металла трубы в дефектах покрытия. В литературе приводятся по этому вопросу противоречивые данные. Одни исследователи отмечают, что алюминиевое покрытие в водопроводной воде не оказывает протекторного действия из-за наличия на его поверхности окисной пленки и в дефектах покрытия протекает коррозия стальной основы. Другие указывают, что стойкость алюминиевых покрытий выше цинковых, но протекторное действие при возникновении дефектов в покрытии у последних выше, чем у алюминиевых. Отмечается также, что горячеалюмини-рованное покрытие может оказывать протекторное действие по отношению к стали в его дефектах. [c.63]

    Дальнейшее развитие теории электрохимической коррозии н значительной мере связано с именем Г. В. Акимова, давшего современную трактовку этих явлений, главным образом на основе представления О местгых (локальных), элементах, [c.639]

    Современная теория электрохимической коррозии металлов сложилась на основе работ Ю. Эванса, Пальмаэра, Хоара, Г. В. Акимова, А. Н. Фрумкина, Я. М. Колотыркина и др. На поверхности металла в присутствии электролита могут протекать одновременно по крайней мере две независимые сопряженные реакции — одна в анодном, а другая в катодном направлении. При коррозии металла анодная реакция заключается в его растворении  [c.518]

    Теории электрохимической коррозии н пасснвиостн металлов лежат в основе методов их защиты от коррозии. К числу их относятся методы, направленные на снижение тока коррозии за счет повышения поляризации коррозионных процессов. Например, повышение водородного перенапряжения введением в коррозионную среду специальных веществ — ингибиторов — резко снижает растворение металла при коррозии с водородной деполяризацией. Предварительное удаление кислорода из агрессивной среды способствует снижению коррозионного тока. Широкое распространение получило нанесение защитных покрытий па поверхность металла металлических, лакокрасочных, полимерных, пленок из труднорастворимых соединений металлов (оксиды, фосфаты) и т. п. Высокой коррозионной устойчивостью обладают металлические сплавы (например, нержавеющие стали), поверхность которых находится в пассивном состоянии. Существуют электрические методы защиты металлов от коррозии, связанные с применением поляризующего тока. Металлу задается потенциал, при котором процесс его растворения исключается или ослабляется. Например, защищаемый металл поляризуется катодно, а анодом служит дополнительный кусок металла. Электрические методы применяются при защите крупных стационарных сооружений. [c.520]


Смотреть страницы где упоминается термин Коррозия электрохимические основы: [c.301]    [c.274]    [c.256]    [c.487]    [c.496]    [c.10]    [c.82]    [c.110]    [c.259]    [c.20]    [c.172]    [c.118]   
Лакокрасочные покрытия (1968) -- [ c.465 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия электрохимическая

Основы коррозии



© 2025 chem21.info Реклама на сайте