Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Динамическая усталость полимеров

    Динамическая усталость полимеров [c.207]

    Сводка данных по динамической усталости полимеров, в частности резин, по работам зарубежных исследователей до 1950 г. имеется в статье Диллона Там же приведена классификация динамических испытаний. [c.203]

    Динамическая усталость полимеров — одно из важнейших эксплуатационных свойств полимерных материалов, ее исследованию посвящено много работ. Закономерности динамической усталости полимеров и данные о поведении этих материалов под циклическими нагрузками рассмотрены в ряде монографий [5.7, 5.54, 6.47] . [c.214]


    ДИНАМИЧЕСКАЯ УСТАЛОСТЬ ПОЛИМЕРОВ [c.271]

    Динамическая усталость ф Долговечность полимеров при циклических нагрузках [c.7]

    Динамическая усталость, или утомление, полимера — это снижение его прочности тшд действием многократных периодических нагрузок или деформаций. [c.207]

    Разрушение полимеров при динамических нагрузках. Разрушение полимеров под действием, циклических деформаций происходит в результате динамической усталости или утомления. Динамическая усталость — это снижение прочности под влиянием многократных периодических нагрузок [c.335]

    Подобно металлам, термопласты могут разрушаться при действии циклических напряжений меньших, чем предел прочности при статических испытаниях. Это явление называют динамической усталостью. Оно встречается при эксплуатации вращающихся и вибрирующих полиамидных деталей, таких как пропеллеры и шестерни, подвергаемые продолжительному воздействию циклических напряжений. Число циклов, необходимых для разрушения детали, зависит не только от напряжения, но и от температуры, содержания влаги, степени кристалличности материала и частоты действия напряжения. При высоких частотах нагружения (обычно более 300 циклов в минуту) энергия деформации практически полностью переходит в тепло, в особенности при температурах, при которых для данного материала характерно высокое поглощение. Этот эффект ускоряет разрушение изделия вследствие теплового размягчения полимера. Раз- [c.117]

    Вследствие высокой прочности и замечательных деформационных свойств полиамиды считают чрезвычайно удобной матрицей для армирования стеклянным волокном, введение которого приводит к значительному увеличению сопротивления полиамидов воздействию динамических нагрузок. Механизм разрушения стеклонаполненных пластмасс в результате их динамической усталости обсуждается в работе [28], где сделан вывод о том, что разрушение в значительной степени инициируется нарушением связи между полимером и наполнителем. Короткие волокна эффективнее, чем длинные, повышают сопротивляемость полиамидов воздействию динамических нагрузок. [c.118]

    В близкой связи с процессами старения находятся явления утомления и усталости полимеров. Утомление, наступающее в результате многократной деформации — динамическое утомление или длительного нахождения полимера в напряженном состоянии — статическое утомление, вызывает постепенное изменение свойств материала, называемое усталостью. Эти изменения могут вначале иметь как обратимый, так и необратимый характер, но, накапливаясь, всегда приводят к необратимым явлениям, которые заканчиваются разрушением полимерного образца. Утомляемость чаще всего измеряется числом циклов (ЛГ) деформации, приводящим к разрущению полимерного материала (выносливость) приложенная при этом нагрузка представляет собой усталостную прочность, которая снижается с увеличением N. [c.645]


    Под явлением динамической усталости, или утомления полимера, понимается снижение его прочности под действием многократных периодических нагрузок. В дальнейшем время до разрыва образца при циклических нагрузках будем обозначать Ти,-Очевидно, что число циклов до разрушения N связано с циклической долговечностью и частотой V следующим соотношением  [c.214]

    Статическое и динамическое утомление капронового волокна развивается по различным механизмам. Так, при динамическом утомлении вследствие продолжительной кристаллизации полимера возникает и развивается большое число дефектов при статическом утомлении появление дефектов вызвано концентрацией нагрузок на границах областей с максимальной неоднородностью. Опыты, проведенные в среде воздуха и азота, показали, что окисление ускоряет и интенсифицирует усталость полиамидного волокна. [c.191]

    В случае полимерных материалов динамическое воздействие имеет весьма сушественное значение. Как уже указывалось ранее, деформация высокоэластических полимеров связана с изменением температуры при растяжении полимеры нагреваются, а при сжатии охлаждаются. Например, у каучуков при переходе от статических воздействий к динамическим, т. е. при переходе от малых частот к частотам порядка 100— 1000 циклов в минуту происходит смещение значений деформации, соответствующее понижение температуры на 20—40°. Это значит, что, например, резина, обладающая морозостойкостью минус 50° при статических испытаниях, может при динамических нагрузках оказаться хрупкой уже при минус 20°. На рис. У1-34 приведены кривые усталости некоторых пластиков (по зарубежным данным). [c.504]

    Включение частиц каучука в матрицу хрупкого пластика, как и следовало ожидать, очень существенно повышает его ударную прочность. И действительно, этот факт является главной причиной использования эластомеров в смесях и привитых сополимерах [775]. Упрочнение таких материалов (по сравнению с исходным полимером) наблюдается и при других (помимо удара) условиях воздействия, таких как простое медленное растяжение и длительное статическое и динамическое нагружение, вызывающее усталость. Предполагают, что во всех этих случаях важную роль играют несколько механизмов деформирования их соотношение в суммарном процессе может зависеть от полимера и природы воздействия. [c.89]

    При действии переменных, в частности периодических или циклических, нагрузок процессы разрушения полимеров ослонсняются действием ряда факторов, не наблюдаемых при статической усталости. Снижение прочности материала под действием переменных нагрузок принято называть динамической усталостью материала (или просто усталостью). [c.329]

    Необходимо изучение закономерностей изменения свойств или закономерностей разрушения полимеров в условиях многократных деформаций. Существует два основных режима нагружения полимеров при испытании на динамическую усталость один из них — это режим ео= сопз( и еср=сопз1 другой режим утомления Оср= [c.207]

    Op, измеренного стандартным способом. Решающим в этом случае оказывается время, в течение которого полимерный образец находится под нагрузкой. Если это время достаточно велико, то разрушение в ряде случаев может произойти при напряжениях, много меньших Ор. Время от момента нагружения образца до его разрушения называется долговечностью материала. Долговечность т является важной характеристикой прочностп. Обычно при экспериментальном изучении долговечности напряжение поддерживается постоянным (а = onst). Если это условие не выполняется, то временная зависимость прочности при статической нагрузке характеризует статическую усталость. Временная зависимость прочности при динамической (чаще всего периодической) нагрузке характеризует динамическую усталость. Поведение материала в момент разрушения описывают величиной максимальной относительной деформации 8р, имеющей место при разрыве. Величина относительной деформации ер зависит от вида деформации, скорости деформации и температуры и в значительной степени от структуры и физических свойств материала. При хрупком разрушении ер составляет сотые доли процента. При разрушении полимера, находящегося в высокоэластическом состоянии, ер может достигать нескольких сотен процентов. [c.285]

    Первые исследования, установившие природу различия между статической и динамической усталостью, выполнены на сшитых эластомерах (резинах). Для полимеров, но-виднмому, впервые в работе 7.47] было обращено внимание на релаксационную природу различия результатов испытаний в статическом и динамическом режимах. Ранее причиной различия считали старение полимера, ускоренное напряжением. Для сшитого эластомера, хорошо защищенного от процессов старения противоста-рителями, закономерности динамической и статической усталости аналогичны 7.47] между временем разрушения т и напряжением сг = соп81 при статическом режиме и между временем до разрушения Тц и максимальным напряжением сгтах за каждый цикл при циклическом режиме справедлив степенной закон вида  [c.214]


    Интересные исследования по выявлению мехаиохимической сущности явления усталости полимеров и выяснению его механизма были проведены Каргиным и Роговиной [4—7]. Авторы использовали для исследования капроновые и вискозные волокнистые материалы, а в качестве нагрузок одно- и многократные усилия растяжения. Было обнаружено изменение свойств капронового волокна вследствие воздействия различных режимов динамического утомления. Последние приводят к возникновению и развитию поперечных трещин, порождающих микродефекты, которые в свою очередь понижают прочность материала. Этот про- [c.190]

    Закономерности разрушения и долговечности полимеров при циклических нагрузках рассмотрены в [9 11.32]. Закономерности динамической и статической усталости сшитого эластомера, например, одинаковы (соотношение между числом циклов до разрушения М и максимальным за цикл напряжением о при растяжении Ыа = = сопз1), но статический режим является более мягким по сравнению с динамическим. Несмотря на то что в статическом режиме материал находится все время в напряженном состоянии, его разрушение происходит значительно позже, чем при динамических напряжениях, когда образец находится в напряженном состоянии лишь часть времени. Это объясняется тем, что при периодических нагрузках перенапрял<ения не успевают отрелаксировать за время каждого цикла нагружения, тогда как при статической нагрузке они с течением времени выравниваются. Для пластмасс релаксация перенапряжений связана с микропластической локальной деформацией в вершинах микротрещин. При увеличении частоты и нагружения возмол ен переход от квазихрупкого к хрупкому разрушению. [c.329]

    Из изложенного следует, что закономерности динамической и статической усталость резины одинаковы, но статический режим испытания является более мягким по сравнению с динамическим. Неслют-ря на то, что в сгатическил условиях резина находится все время в напряженном состоянии, ее разрушение происходит значительно позднее, чем npi динамических испытаниях, когда резина находится в напряженном состоянии лишь часть времени. Это объясняется, во-первых, тем, что при периодических нагрузках перенапряжения на микродефектах не успевают отрелаксировать за время каждого цикла нагружения, тогда как при статической нагрузке они с течением времени выравниваются и приближаются к равновесному значению Во-вторых, разрушение полимеров при многократных деформациях ускоряется механически активированными химическими ироцесеами . [c.208]


Смотреть страницы где упоминается термин Динамическая усталость полимеров: [c.335]    [c.341]    [c.118]    [c.64]    [c.282]    [c.503]   
Смотреть главы в:

Химия и физика полимеров -> Динамическая усталость полимеров

Структура и механические свойства полимеров Изд 2 -> Динамическая усталость полимеров

Структура и механические свойства полимеров -> Динамическая усталость полимеров




ПОИСК





Смотрите так же термины и статьи:

Усталость



© 2025 chem21.info Реклама на сайте