Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Описание решетки кристалла

    Оптические методы исследования дают относительно ограниченную информацию о спектре колебаний решётки. Так, высоко прецизионные рамановские измерения первого порядка позволяют изучать только оптические фононы вблизи центра зоны Бриллюэна. А такие методы, как инфракрасное поглощение, фотолюминесценция или рамановское рассеяние второго порядка являются косвенными и неточными измерениями энергий и ширин фононов в симметричных точках зоны Бриллюэна. Неупругое рассеяние нейтронов потенциально может дать полную информацию о колебательном спектре кристалла. Но пока ещё слабое экспериментальное разрешение этого метода не позволяет широко использовать его для исследований изотопических эффектов. Однако в случае сильного изотопического беспорядка современные установки позволяют получить количественную информацию. Так, недавно влияние изотопического беспорядка на энергии и ширины линий фононов в Ge было предметом исследований в работах [112, 113]. Такие измерения представляются особо интересными с академической точки зрения, поскольку позволяют сделать простую проверку теоретических моделей, широко используемых для описания разупорядоченных систем, таких, например, как приближение когерентного потенциала. [c.74]


    Недостаток экспериментальных данных не позволяет делать какие-либо выводы о механизме положительного и отрицательного влияния температуры на яркость. Описанные выше опыты имели своей целью чисто качественную проверку поведения технических катодолюминофоров и определение границ оптимальных условий их практического применения. Увеличение яркости с повышением температуры принято рассматривать как результат более быстрой рекомбинации электрона активатора с дыркой верхней заполненной полосы. Такая упрощённая точка зрения вряд ли, однако, объясняет всю сумму наблюдаемых фактов. Гасящее действие приписывается обычно рассеянию энергии возбуждённых электронов за счёт столкновений с узлами решётки. Такая трактовка вполне состоятельна для области высоких температур, близких к верхней температурной границе. Случаи гашения при более низких температурах предполагают белее сложный механизм явления, требующий учёта характера связей в кристалле. Перенос выводов, полученных при возбуждении люминесценции светом, на катодный процесс в данном вопросе вряд ли может быть сделан безоговорочно. [c.102]

    В случаях, аналогичных описанному выше, мы переходим в область многократной активации, когда трегер содержит более чем один тип излучающих атомов. Эти случаи наглядно показывают, что в активации играет роль природа самого активатора и окружающее его потенциальное поле кристалла. Энергетический спектр включений сильно модифицируется окружающей обстановкой. Изменения энергетического спектра влияют на вероятность оптических переходов в данном участке решётки и определяют кпд активатора в люминесценции. [c.126]

    Описанная схема относится к идеальной кристаллической решётке. Каждая из зон здесь соответствует отдельному уровню атома или иона. Хотя длительности пребывания электронов в полосе проводимости, куда они переносятся при возбуждении из заполненных зон, для подобных кристаллов исследованы совершенно недостаточно, но всё же известно, что они крайне малы. О порядке длительности можно судить по аналогии со свечением соответствующих ионов, у которых возбуждённое состояние длится- 10 сек. при разрешённых переходах и сек. при запрещённых переходах. [c.330]

    Как выяснилось при анализе, теория этого явления по существу уже была разработана Лэмбом [6], но она относилась к захвату нейтронов ядрами атомов, находящихся в кристаллической решётке. Мёссбауэр объяснил наблюдаемые им результаты, применив выводы этой теории к резонансному рассеянию и поглощению гамма-квантов. Из теории следовало, что ядра, находясь в кристаллической решётке кристалла, могут взаимодействовать с гамма-квантами, не испытывая отдачи. В 1961 году за открытие описанного явления Р. Мёссбауэру была присуждена Нобелевская премия по физике, а сам эффект получил название эффекта Мёссбауэра. [c.97]


    Основываясь на данных рентгеноструктурного и электронно-графического анализов, Ю. М. Бутт с сотрудниками 1119[ считает, что в объеме цементного камня раздельно существуют два вида кристаллических каркасов — гидросиликатнЫи"11 гидроалюминатный. Кроме них в структуре распределено большое количество индивидуальных кристаллов гидратов и их агрегатов, которые удерживаются механическими силами сцепления. Механизм срастания структурноподобных гидратов друг с другом описан ими следующим образом. В узком зазоре между сблизившимися (в результате броуновского движения) кристаллами возрастает концентрация вовлеченного раствора, а затем начинается процесс его кристаллизации. Вновь образующийся кристаллик на поверхности кристалла, возникшего ранее, растет в направлении, параллельном поверхности другого, достигает ее и срастается. Выделяющееся при этом тепло расходуется на восполнение убыли концентрации путем перехода в растворенное состояние части поверхностных слоев срастающихся кристаллов. Вследствие переотложения вещества зарастает зазор между сблизившимися частицами. Строение кристаллической решётки шва аналогично строению решеток срастающихся кристаллов, и его прочность может превышать прочность самих кристаллов. Интересно, что несколько ранее М. И. Стрелков [104] предполагал, что сращивание кристаллов протекает после окончания их роста, срастание кристаллогидратов происходит (после их сближения силами диспергационного давления) при помощи пересыщенного в узком зазоре между поверхностями кристаллов раствора подобно залечиванию дефектов в крупных кристаллах. [c.39]

    Для описания многих статических и динамических свойств свойств изотонически разупорядоченных кристаллов хорошим первым приближением оказывается модель приближение) виртуального кристалла реальная решётка с хаотично распределёнными изотопами заменяется на решётку без изотопического беспорядка, где масса атома каждого элемента равна средней массе соответствующих изотопов. [c.64]

    Из описанных свойств свечения вытекают следующие заключения свечение имеет молекулярный характер и излучателем является молекула уранилового соединения. Частоты излучения определяются комбинацией частот электронного перехода и частоты колебаний группы иОа- Основное колебание последней связано с колебаниями атомов кислорода в группе уранила, однако в кристаллах к этим колебаниям, повидимому, добавляются колебания всей группы ПОз относительно кристаллической решётки. Составные части молекул анион, второй катион и кристаллизационная вода, сильно влияют иа структуру полос излучения и поглощения, на их относительную интенсивность и, особенно, на выход свечения. Растворение ураниловых солей вызывает возмущение верхних энергетических уровней молекулы и ведёт к размыванию спектров. Кроме того, возмущение верхних энергетических уровней способствует осуществлению безизлучательных переходов, вследствие чего выход люминесценции растворов оказывается значительно ниже выхода свечения солей. Излучение системы возбуждённых молекул но изменяет их распределения по энергетическим уровням возбуждённого состояния это распределение определяется температурой среды. Между моментом поглощения и моментом излучения присходит перераспределение молекул по уровням возбуждённого состояния, заканчивающееся в тече-Н1ге времени, малого по сравнению с длительностью состояния возбуждения, и сохраняющееся затем в течение всего времени затухания свечения. [c.224]

    Недостаточность предложенной схемы. Рассмотренная ыше схема зон кристаллофосфора должна рассматриваться как самое первое приближённое описание соотношений, существующих в кристаллической решётке. Она не исчерпывает свойств даже нростспшшх реальных кристаллов. Здесь мы кратко отметим основные недостатки схемы, необходимость устранения которых вытекает как нз рассмотрения приводившихся ранее экспериментальных данных, так и из вoii тв отдельных классов фосфоров, описываемых ниже, и перечислим допущения, сделанные при построении схемы. [c.337]


Смотреть страницы где упоминается термин Описание решетки кристалла: [c.504]    [c.504]    [c.422]   
Смотреть главы в:

Основы структурного анализа химических соединений 1982 -> Описание решетки кристалла

Основы структурного анализа химических соединений 1989 -> Описание решетки кристалла

Основы структурного анализа химических соединений -> Описание решетки кристалла




ПОИСК







© 2024 chem21.info Реклама на сайте