Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Материалы для аппаратов и трубопроводов высокого давления

    Соединение трубопроводов между собой, а также с аппаратами или мащинами может быть разъемным и неразъемным. Для неразъемных соединений трубопроводов применяют сварку, клепку или пайку. Разъемные соединения труб бывают фланцевыми, муфтовыми, раструбными и др. Фланцевое соединение трубопроводов одно из самых распространенных. Фланцы крепят к трубопроводам на резьбе или приваривают. Уплотнение между фланцами создают при помощи прокладок, которые зажимают болтами или шпильками. Материал прокладок должен быть устойчивым к действию транспортируемой среды. Для уплотнения трубопроводов высокого давления применяют линзовые уплотнения. [c.101]


    В неразъемных соединениях герметичность достигается путем сварки, пайки, развальцовки, соединения при помощи цементов, замазок и клеев. Герметичность разъемных соединений обусловливается упругой и лишь частично пластической деформацией прокладочного материала. Беспрокладочные разъемные соединения с хорошо пришлифованными, небольшими по площади поверхностями применяются при плоских, конических и сферических уплотнениях седел и- клапанов вентилей, шаровых клапанов и т. п. В аппаратах и трубопроводах высокого давления применяют линзовые, чечевицеобразные уплотнения с шаровыми, хорошо отшлифованными поверхностями, прилегающими только по контурной линии к плоской или конической поверхности торца трубы или корпуса аппарата. На рис. 71 [c.274]

    Фланцы. Это наиболее распространенные разъемные соединения аппаратов и трубопроводов. Они служат для соединений отдельных частей аппаратов съемных крышек, отдельных царг, люков и др. Ответственная часть фланцевого соединения — узел уплотнения, Различают уплотнения с пластической деформацией уплотняющих элементов и соединения с упругой деформацией. В наиболее распространенных соединениях с пластической деформацией уплотнение достигается тем, что значительно более мягкая, чем основной материал фланца, прокладка деформируется при затягивании соединения и заполняет все неровности на уплотнительной (привалочной) поверхности фланцев. Соединения с упругой деформацией требуют тщательной обработки уплотнительных поверхностей. Их применяют значительно ре е как правило, при повышенных давлениях. Герметичность соединения возрастает с увеличением удельного давления, действующего на прокладку. Чем меньше ширина прокладки, тем больше удельное давление прн одной и тон же силе сжатия, поэтому прокладки для соединений высокого давления делают более узкими. [c.51]

    Принцип действия разъемного беспрокладочного уплотнения основан на упругой (и частично остаточной) деформации, возникающей на стыкуемых поверхностях. Такие соединения с пришлифованными и небольшими по площади поверхностями широко используют, например, в уплотнениях седел запорной арматуры. В аппаратах и трубопроводах высокого давления до 30 МПа (300 кгс/см ) применяют линзовые чечевицеобразные уплотнения с хорошо отшлифованными поверхностями, прилегающими к шаровой или конической поверхностям торцов соединяемых отрезков трубы. Под действием осевых сил в месте касания двух поверхностей возникает поясок деформации материала, которым и создается необходимое уплотнение. [c.369]


    Самым простым и наиболее распространенным является вертикальный аппарат (рис. 6.9.2.1, а) с аксиальным (центральным) вводом сплошной среды, обычно цилиндрической формы, при высоких давлениях имеет форму шара. Сплошная среда поступает в рабочую камеру аппарата из трубопровода меньшего диаметра, поэтому входной поток имеет ярко выраженный неравномерный профиль скорости по сечению аппарата. Для выравнивания потока по сечению используют различные приемы и устройства [13]. Можно увеличивать высоту зернистого слоя по сравнению с расчетной, так как зернистый слой обладает выравнивающим действием. Однако такой способ не всегда приемлем, например, в случае использования дорогостоящего катализатора или по причине спекания зерен в областях с повышенной температурой слоя. Используют также укладку подложки из инертного материала (рис. 6.9.2.2) [11-13]. Расположение инертных частиц на подложке неравномерное обычно внизу на перфорированной решетке располагаются крупные куски, далее их размер последовательно уменьшается. Инертный материал препятствует просыпанию мелочи и забиванию отверстий решетки. Сверху слой во избежание уноса покрывают сеткой или таким же слоем инертного материала. [c.559]

    Тнтан и его сплавы находят все большее применение в совре-мен.чом машиностроении, авиастроении, судостроении, турбостроении, в производстве вооружения. Особенно ценен титан как материал для изготовления частей конструкций, работающих в напряженных условиях. Критерием пригодности таких материалов является отиошение их прочности к весу. Титан и его сплавы используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, они тнироко применяются для изготовления деталей самолетов, космических аппаратов, ракет, трубопроводов, котлоз высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. Одной из наиболее перспективных областей применения титана является судостроение, где решающее значение имеет высокая прочность нри малой плотности и высокая стойкость к коррозии и эрозии в морской воде. Сущестг енное значение имеет использование титана в виде листов для обшивки корпусов судов, литых деталей из титана, выдерживаюнтих длительное пребывание в морской воде, а также для покрытия изнутри смесительных барабанов, предназначенных для перемешивания агрессивных материалов и для других це.тен. В связи с дороговизной листового титана большой практический интерес для судостроительной, химической и других отраслей промышленности представляет применение титана в качестве плакировочного материала для изготовления биметаллических стальных листов. [c.274]

    Применяется этот затвор с медным обтюратором для давлений 300—500 ат, при более высоком давлении отмечены случаи разрыва кольца. Затвор допускает 5—6 разборок, после чего требуется замена обтюратора, вследствие его перерезания ножами. Обтюратор не требует тщательной обработки и прост в изготовлении. Обтюратор из нержавеющей стали выдерживает давление до 1000 ат и значительно большее число разборок, но усилие затяга у него больше, чем у медного, и кроме того он требует более высоких механических свойств от материала ножей, а следовательно, и материала корпуса и крышки. Ножи в этом затворе должны быть расположены друг против друга, поэтому предусматривают направляющие для крышки. Направляющими служат специальные штифты или же два болта входят в отверстия в крышке с небольшим зазором. В аппаратах высокого давления стараются избежать различных вводов через снимающуюся крышку, так как это требует отключения трубопроводов. Вводы целесообразно делать или через вторую не съемную крышку или сбоку через фланцы. Для часто разнимающихся крышек в Институте высоких давлений был предложен ножевой затвор (рис. 91, V/a), отличающийся тем, что обтюратор выполняется сплошным, крышка плоской и нож имеется только у корпуса. Обладая хорошими. качествами предыдущего затвора, он имеет перед ним следующие преимущества уплотнение достигается не по двум поверхностям, а только по одной, что уменьшает вероятность пропуска обтюратор, при той же толщине, перерезается по меньшей мере в два раза медленнее, так как режется одним ножом крышка не требует центрировки, так как с другой стороны расположена плоская крышка, на нож же обтюратор легко устанавливается, так как после первого затяга на нем образуется канавка. [c.186]

    Штуцера и электровводы. Чтобы не ослаблять корпус колонны высокого давления, трубопроводы и контрольноизмерительные приборы присоединяют к аппарату через отверстия в крышке и днищах. Присоединение тройника к днищу 1 аппарата высокого давления показано на рис. 160. В этом соединении использовано линзовое уплотнение 2. Линза изготовлена из того же материала, что и [c.217]

    Для перемещения сыпучего материала из одного аппарата в другой должна быть соблюдена соответствующая высота сыпучего материала в соединительном трубопроводе, которая будет достаточной, чтобы обеспечить движение сыпучего материала, в том числе и в зону более высокого давления (рис. ХУП-4). [c.327]


    Особую разновидность стекла представляет кварцевое стекло — материал, получаемый плавлением при высокой температуре природного кварца с содержанием 98—99 7о SiOs. Чаще всего используют непрозрачное кварцевое стекло, получаемое плавлением чистого кварцевого песка в электропечах. Благодаря незначительному коэффициенту термического расширения оно характеризуется высокой термической стойкостью. Изделия из кварца, нагретые до высоких температур, можно охлаждать водой. Кварцевое стекло устойчиво к воздействию большинства минеральных и органических кислот (исключение составляют плавиковая и фосфорная кислоты), не разрушается также под действием галогенов и щелочей. Газы диффундируют через кварцевое стекло только при высоких температурах. Недостатком его является склонность к кристаллизации. Этот процесс с заметной скоростью происходит при температурах выше 1200 С. Кварцевое стекло применяют в роли заменителей цветных и благородных металлов и сплавов. Из него изготавливают трубопроводы, различные аппараты для работы под давлением или вакуумом, сосуды емкостью до 100 л и др. [c.147]

    Сравнительно высокие механические свойства АТМ-1 позволяют применять его как самостоятельный конструкционный материал, в частности, для аппаратов и трубопроводов, работаюш,их под давлением. [c.18]

    Воздух подавался в сушилку при помощи вентилятора высокого давления ЭВ54-25 через электрокалорифер. Для измерения расхода воздуха использовалась нормальная диафрагма на всасывающем трубопроводе. Влажность входящего воздуха измерялась психрометром. Отработанный воздух проходил через циклон, в котором отделялось основное количество унесенных из слоя частиц сухого материала. Унос составлял (вес. % от производительности аппарата по сухому материалу) для мумии 5—7, для ПХВ 5—10 и для ПВФ — до 3. [c.283]

    Наиб, распространенный транспортирующий агент-воздух, но по технол. соображениям могут использоваться и др. газы, напр, азот-для транспортирования пожаро- и взрывоопасных. материалов. Воздействие транспортирующего газа на сьшучий материал м. б. прямым или косвенным. В первом случае транспортирование материалов в трубопроводах и аппаратах осуществляют в потоке газа за счет перепада давления последнего. Во втором случае -фанспортируемый материал перемещается ( течет ) по аэрожелобам и аппаратам в псевдоожиженном (аэрируемом) состоянии (см. Псевдоожижение) под действием силы тяжести. Сочетание прямого и косвенного воздействия транспортирующего газа на материал используют при П. в плотном слое (когда сьшучая масса с высокой концен-фацией твердой фазы пере.мещается в виде столба, или пористого поршня ). [c.582]

    Если дистилляция проводится при давлениях ниже 1 мм рт. ст., то объем пара становится очень большим и сопротивление соединительной трубы между ристилляционным аппаратом и конденсатором препятствует нормальной даботе. Возникает значительная разность давлений на концах соединительного трубопровода. Чтобы избежать этого, дистилляцию проводят так, что поверхность конденсации находится в непосредственной близости от поверхности испарения материала, т. е. применяют встроенный конденсатор. В таких условиях успешно производится разделение веществ с большой молекулярной массой и весьма чувствительных к высоким температурам. [c.149]


Смотреть страницы где упоминается термин Материалы для аппаратов и трубопроводов высокого давления: [c.220]    [c.360]    [c.77]    [c.685]    [c.256]    [c.70]    [c.164]   
Смотреть главы в:

Справочник. Основы конструирования и расчета химико-технологического и природоохранного оборудования т.1 -> Материалы для аппаратов и трубопроводов высокого давления




ПОИСК





Смотрите так же термины и статьи:

Давление в трубопроводах

Трубопроводы высокого давлени



© 2025 chem21.info Реклама на сайте