Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория перехода спираль — клубок в полипептидных цепях

    Теория перехода спираль—клубок в полипептидных цепях [c.304]

    Геометрический подход к описанию структуры макромолекул позволяет вычислить с помощью методов, изложенных в гл. 5, средние квадратичные размеры полипептидных цепей в области перехода спираль — клубок. Теория размеров (среднего квадрата расстояния между концами и среднего квадрата радиуса инерции) молекул полипептидов была развита Нагаи 24,25.29] который рассмотрел две конформацион- [c.322]


    В предыдущей главе мы изложили теорию конформационных переходов (типа спираль—клубок) в полипептидных цепях, происходящих при изменении температуры. Между тем, как показывает опыт, такие переходы могут происходить также и при изменении какой-либо другой характеристики окружающей среды, от которой зависит константа равновесия для образования внутримолекулярной водородной связи. Так, если молекула помещена в двухкомпонентный растворитель, одна из компонент которого способна к образованию водородных связей с аминокислотными остатками, то такое межмолекулярное связывание будет специфично, т. е. оно может иметь место лишь для мономерных единиц, не связанных внутримолекулярными водородными связями. Естественно, что наличие специфического межмолекулярного связывания будет влиять на переход спираль—клубок. Теория этого влияния может быть построена путем обобщения изложенного в предыдущей главе метода построения статистической суммы макромолекулы. [c.329]

    Изложенная выше теория переходов спираль — клубок относится к достаточно длинным полипептидным цепям (и - 1), в которых можно пренебречь краевыми эффектами, однако, Зимм и Брэгг [23] и Лифсон и Ройг [ >] развили также теорию переходов спираль — клубок в полипептидных цепях при произвольной степени полимеризации. Они показали, что уменьшение степени полимеризации уширяет переход и сдвигает его в сторону больших значений 5, т. е. стабилизует клубкообразную конформацию ). При низких степенях полимеризации, когда число мономерных единиц меньше среднего числа последовательных связанных или свободных единиц вяз и V(.вoб вычисленного при переход спи- [c.317]

    Тем более вне рамок указанных теорий оказываются индивидуальные различия отдельных макромолекул, проявляющиеся в различиях температур, теплот и степеней резкости переходов в различных биополимерах. В частности, теория переходов спираль—клубок в молекулах ДНК не учитывает гетерогенности состава ДНК и в соответствии с этим не может описать зависимости температуры и резкости плавления двойной спирали от ее состава. Теория переходов спираль—клубок в полипептидных цепях не объясняет, например, резкого различия теплот плавления спиралей поли- у-бензил- .-глутамата, с одной стороны, и поли-/,-глутамино-вой кислоты и поли-А-лизина с другой (как известно, см. 24, эти теплоты отличаются по порядку величины и даже по знаку). Переход от модельной теории переходов спираль—клубок, объясняющей лишь общие черты явления,. [c.385]


    Неспособность столь простого термодинамического рассмотрения количественно объяснить экспериментальные результаты связана с тем, что предположение о существовании цепей или в полностью спиральной, или в полностью клубкообразной конформациях является слишком сильным. Хотя образование границы спираль — клубок термодинамически невыгодно (разд. 20.3), существует конечная вероятность того, что молекула будет содержать как спиральные, так и клу сообразные участки одновременно. Чем длиннее цепь, тем больше вероятность существования спиральных областей, разделенных клубкообразными участками. Для адекватного описания реальной ситуации следует использовать более строгий подход с привлечением аппарата статистической термодинамики. С этой целью могут быть применены две более точные теории. В пфвой из них предполагается, что спиральные и клубкообразные структуры могут существовать в одной цепи одновременно, но в каждой цепи образуется только один спиральный участок. Таким образом, спираль может начать формироваться в любой части цепи, но новые сшфальные остатки появляются только на концах спирали. Эта модель типа застежка-молния хорошо описывает переход в коротких полипептидных цепях. В рамках второй, более точной теории считается, что в одной цепи может существовать любое число спиральных и клубкообразных областей. [c.190]

    Обозначим через п число сегментов, образующих водородные связи (в случае полипептидных цепей п равно числу аминокислотных остатков в цепи), а через К — константу равновесия для реакции включения в уже сформировавшуюся спира-лизованную часть молекулы следующего остатка, входящего в состав длинной неспирализованной части. Величина К зависит от температуры и природы растворителя. Поскольку образование первой водородной связи, инициирующей образование новой спирализованной части, затруднено, константа равновесия для этого процесса равна а/С, причем параметр а не зависит от температуры и по величине меньше Чем меньше а, тем резче переход. Цимм и Брэгг развили статистическую теорию перехода от а-спирали к клубку, исходя из модели, в которой водородной связью соединяются группы, находящиеся на расстоянии трех остатков друг от друга. В табл. 12 приведены некоторые полученные ими результаты. Из таблицы видно, что при значениях К< существование спирали невозможно, какой бы длины ш была полипептидная цепь, а при К > 1 спираль образуется при п, превосходящем некоторую величину. Для того чтобы прн 0=10 половина остатков была спирализована, при /(=1,1 2 3 и 7 величина п должна быть равна соответственно 60. 15, 11 и 8. Если образование спирального участка происходит легче, например если значение о равно Ю , то при К = 2 половина аминокислотных остатков входит в состав спирали уже при п = 9. Экспериментальные данные, относящиеся к зависимости температуры перехода поли-у-бензил-Е-глутамата от длины цепи, показывают, что значение о можно считать равным 2 10"1Табл. 12 построена в предположении, что а=1-10 . Она дает возможность проследить, при каких К в полипептиде, длина цепи которого характеризуется числом п, происходит переход клубок — спираль, обусловленный уменьшением температуры. [c.283]


Смотреть страницы где упоминается термин Теория перехода спираль — клубок в полипептидных цепях: [c.334]    [c.345]    [c.294]    [c.345]   
Смотреть главы в:

Конформации макромолекул -> Теория перехода спираль — клубок в полипептидных цепях




ПОИСК





Смотрите так же термины и статьи:

Полипептидные цепи

Теория полипептидная



© 2025 chem21.info Реклама на сайте