Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептиды конформация молекул

    О конформации молекул полипептидов и ее значении для биологических свойств известно еще очень мало. Исследование осложняется тем, что пространственное строение полипептида в значительной мере [c.381]

    Кривые дисперсии оптического вращения и спектры кругового дихроизма используют для определения структуры, конфигурации и конформации сложных оптически активных молекул, например стероидов. Другая щироко исследуемая область — белки и синтетические полипептиды. Здесь может быть получена информация о значительных кон-формационных изменениях, так как оптическое вращение очень чувствительно к конфигурациям и конформациям молекул. [c.488]


    Характерной особенностью современных работ по конформационному анализу полипептидов является расчет предпочтительной конформации с использованием трехмерных структур белков, установленных ранее с помощью рентгеноструктурного анализа, что позволяет проверить правильность расчета. Полученные результаты существенно разнятся по достоверности ввиду неопределенностей, связанных с установлением минимума энергии конформации молекулы, как это показано на примере полипептидов. [c.444]

    Среди известных синтетических полипептидов наиболее полная информация о гидродинамических и морфологических свойствах была получена для поли-"[-бензил-Ь-глутамата [88] (ПБГ), конформации молекул которого в растворах изучались методами светорассеяния [86, 91], вискозиметрии [86, 89], осмометрии, спектроскопии [90], поляриметрии [91, 88], диффузии и седиментации [95], а также методом ориентации в электрическом поле [92, 140—142, 269]. Все указанные исследования приводят к аналогичным результатам, согласно которым молекулы ПБГ в ряде органических растворителей (например, ж-крезоле), будучи скреплены внутримолекулярными водородными связями, могут существовать в виде жестких а-спиралей [93], имеющих гидродинамическую форму цилиндра диаметром = 15 А и длиной [c.606]

    Это обстоятельство, с одной стороны, подтверждает возможность существования жестких спиральных конформаций молекул полипептидов не только в твердом состоянии вещества, но и в растворах, с другой — служит иллюстрацией применимости ориентационной теории [формул (7.8) и (7.18)] при количественном изучении эффекта Максвелла в растворах жестких палочкообразных частиц. [c.607]

    Переход от а-спирали к статистическому клубку (свободное вращение вокруг связей С—С и С —N) в разбавленном растворе синтетического полипептида может быть вызван нагреванием или добавлением денатурирующих средств (обычно сильных кислот) [6]. Однако, поскольку жесткая, вытянутая конформация молекул полимера необходима для получения жидкокристаллического состояния в растворе полипептида, мы рассмотрим только те экопериментальные условия, в которых существует конформация а-опирали. Учитывая это, мы можем рассматривать спиральный полипептид как цилиндрический стержень, содержащий внутреннее стержнеобразное ядро значительной жесткости, которое окружено пластичной оболочкой из гибких боковых цепей, перемешанных с растворителем. [c.184]

    Молекулы одной и той же химической структуры могут различаться геометрической формой благодаря возможности поворотов отдельных звеньев вокруг простых связей, соединяющих эти звенья. Образующиеся таким образом различные геометрические формы макромолекулы называются конформациями. Молекула может иметь разные конформации, которые переходят друг в друга при определенных условиях без разрыва химических связей. В этом отличие конформации макромолекулы от ее конфигурации. Простейшая конформация молекулы — это плоский зигзаг. Такая конформация преобладает в молекулах полиэтилена. Более сложными конформациями являются спиральные формы цепей. Спиральной конформацией обладают, например, макромолекулы полипептидов, винильных изотак-тических полимеров — полипропилена, полистирола, полибутена-1. [c.26]


    Структуру и конформацию молекул синтетических полипептидов изучали многие исследователи с применением гидродинамических [139, 140, 273, 274, 276], электрических [260, 277] и других методов. Эти исследования показали, что в некоторых растворителях полипептидные цепи принимают конформацию, близкую к жесткой а-спирали [147], которая может быть нарушена при изменении ионной силы, полярности, состава или температуры растворителя [134, 136, 137, 272]. [c.470]

    Существование жестких спиральных конформаций молекул синтетических полипептидов в разбавленном растворе было впервые доказано Доти и др. [314] на основе вискозиметрических данных. Они обнаружили, что при растворении в хлороформе, насыщенном формамидом, молекулы поли-у-бензил-Ь-глутамата ведут себя как стержневидные частицы,, в то время как их поведение в растворе дихлоруксусной кислоты согла- [c.120]

    Формирующийся в процессе трансляции предшественник ИЛ-2 содержит 153 аминокислотных остатка, 20 из которых образуют сигнальную последовательность, отсутствующую у зрелой молекулы. Полипептид имеет одну внутримолекулярную дисульфид-ную связь в положениях 58-105, которая играет ключевую роль в создании биологически активной конформации молекулы. Замена цистеина на серин хотя бы в одном положении приводит к полной потере биологической активности ИЛ-2. Место связывания с рецептором к данному цитокину расположено на участке цепи, включающем аминокислотные остатки 1-58. Предполагается наличие второго участка связывания с последовательностью 106-115, однако оценка вклада этого участка во взаимодействие с рецептором требует дополнительной информации. [c.114]

    В табл. 6.7 приведены значения ДС для основных аминокислот (принимая в качестве среды переноса этанол). Поскольку глицин является основным звеном пептидной цепи, обеспечивающим ее конформационные переходы, возникновение конформаций, характерных для данной белковой молекулы, определяется природой боковых заместителей других аминокислотных звеньев, определяющих первичную структуру полипептида. [c.348]

    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]

    Понятно, что первые исследователи были приведены в замешательство открытием, каких размеров может достигать полипептид-ная цепь в некоторых белках, согласно оценкам их молекулярной массы. Некоторые авторы [3] пришли к заключению, что имеющаяся конфигурация действует таким образом, что помогает молекуле гораздо сильней уплотниться, чем это можно было ожидать на основании простейших и наиболее очевидных предположений . Большие успехи в исследовании биополимеров, таких как белки н нуклеиновые кислоты, а также становление молекулярной биологии в значительной степени произошли в результате понимания того факта, что такие ограничения, накладываемые на форму и размер частиц, действительно существуют. Определение точной пространственной структуры белков с помощью кристаллографической техники и в ряде случаев исследования, которые показали дискретные изменения в конформации белков, когда они вступали в [c.219]

    Особую роль играет внутримолекулярная связь для многих биоорганических соединений (белков, полипептидов, ДНК и др.), определяя равновеснь1е конформации молекул. Внутримолекулярная водородная связь проявляется в спектральных характеристиках системы, влияет на дипольный момент молекулы однако вещества, в которых образуются только такие связи, по своей температуре кипения, плавления, вязкости, диэлектрической проницаемости не обнаруживают заметной специфики по сравнению с системами без водородных связей. [c.125]


    Шерага [188]. Однако цель этой работы выходит далеко за рамки ис- едования конформационных возможностей пептидного гормона, сравни- льно простого по своему размеру и аминокислотному составу. Энке- алин использован лишь в качестве примера, который должен продемон-(сгрировать возможности предложенного авторами метода поиска самых глубоких, отвечающих нативным глобальным конформациям молекул, энергетических минимумов среди множества так называемых локальных минимумов на многомерных потенциальных поверхностях пептидов и белков. В связи с этим затрагиваются некоторые аспекты проблемы свертывания и структурной организации природных полипептидов, что представляет общий интерес, в связи с чем остановимся на публикации Ли И Шераги, уже упоминавшейся в разделе 7.3, более подробно. [c.349]

    Эта проблема была исследована для полимеров с длинными цепями (Эмброз, неопубликов.) можно показать, что изменение конформации молекулы полимера, содержащей асимметрические углеродные атомы, в результате изменения положения групп благодаря вращению около валентных связей способно привести и к изменению оптического вращения полимера. Таким образом, изучение оптического вращения полимеров представляет собой метод исследования важного вопроса о заторможенных (относительно валентных связей) положениях, упоминавшихся на стр. 292. Правда, еще неизвестны атомные параметры, которые позволили бы провести абсолютные вычисления однако были получены некоторые ценные качественные результаты (Robinson, Bott, 1951), которые будут изложены в разделе о полипептидах и белках (стр. 309).  [c.298]

    Влияние pH на конформации полинуклеотидных цепей в растворе обусловлено тем обстоятельством, что водородные связи, стабилизующие спиральную структуру, образуются в этих молекулах между группами, способными к ионизации, и поэтому ионизация хотя бы одной из групп, участвующих в об.разовании водородной связи, означает одновременно разрыв последней, что ведет к изменению конформации молекулы. В этом случае мы встречаемся с ярким примером специфических взаимодействий, о которых говорилось ранее применительно к полипептидам (см. 26, 27). Действительно, ионизация оснований, т. е. процесс отдачи или связывания протона (соответственно для кислотных и основных ионизуемых групп) осуществляется лишь при отсутствии водородных связей в спиральной форме такой процесс не имеет места. Пуриновые и пиримидиновые основания, входящие в ДНК и синтетические полинуклеотиды, образуют водородные связи между аминогруппой и атомом азота, включенным в цикл, с одной стороны, и группой —МН—СО — с другой. Отрицательные логарифмы констант диссоциации этих групп соответственно равны —2,9 (гуанин) 3,7—3,8 (аденин) 4,5—4,8 (цитозин) р/Скн-со 9,5—11,4 (гуанин, тимин, урацил). Поскольку аминогруппа присоединяет протон, а группа —NH—СО— отдает его, то первая заряжена при pH < рКш2 а вторая при pH > рКш-со- Таким образом, в диапазоне рК 2 < рН < / АГын-со пуриновые и пиримидиновые основания не заряжены, и здесь возможно существование спиральной конформации молекул. Интересный [c.372]

    Замена растворителя может влиять и на стерические свойства некоторых лигандов. Так, например, в случае макромолекул полипептидов (с точки зрения координационной химии они являются поли-функциональными лигандами) перемена растворителя может вызвать существенные изменения в конформации молекул, влияя на их поведение как лигандов. Кортикотропин, например, не обнаруживает высокой упорядоченности в водных растворах [50], однако в трифтор-этаноле этот полипептид принимает структуру а-спирали [25]. В смесях растворителей типа вода — трифторэтанол степень упорядоченности пропорциональна соотношению растворителей в смеси все это отражается на равновесных константах протонирования для пептидов [15, 47]. Естественно, что конформационные изменения оказьшают влияние на координацию кортикотропина с металлом. [c.185]

    В дальнейших работах, проведенных с образцами поли-у-бензил-Ь-глу-тамата (ПБГ) и поли-е -М-карбобензокси-Ь-лизина различного молекулярного веса [273—277, 139, 278, 281, эти выводы уточнялись и были несколько изменены как в отношении возможного типа спиральной структуры молекул, так и в вопросе о ее жесткости. Так, оказалось, что гидродинамические, электрические и рентгеноструктурные характеристики молекул двух указанных полипептидов лучше согласуются с моделью спирали 3)о, для которой шаг на мономерное звено составляет около 2 А, чем с моделью а-спирали (шаг 1,5 Л). Кроме того, было показано, что спиральные структуры не являются абсолютно жесткими и с ростом молекулярного веса конформация молекул заметно отклоняется от прямого стержня. [c.470]

    Согласно существовавщей до недавнего времени традиционной точке зрения для поддержания внутримолекулярной структуры полимеров в растворах необходимо наличие специального типа взаимодействий, в частности — водородных связей. Именно этого типа внутримолекулярные взаимодействия считали ответственными за спиральную конформацию молекул полипептидов, белков и нуклеиновых кислот (см., например, [251, 510]). Лишь в последнее время стали допускать, что ван-дер-ваальсовы взаимодействия между гидрофобными группами цепи также участвуют в стабилизации спиральной структуры молекул указанных полимеров 538—540]. [c.264]

    Дополнительная информация о природе реакции антиген — антитело может быть получена при проведении экспериментов с синтетическими полипептидами. Если рассматриваемый синтез антител происходит при строго определенной поверхностной конформации молекулы глобулярного белка, то неожиданным будет тот факт, что синтетические полипептиды должны быть антигенными, особенно потому, что это свойство не проявляет никакой корреляции с устойчивостью спиральной конформации. Было обнаружено, что сополипептиды Ь-лизина и Ь-глутамипо-вой кислоты являются антигенами, хотя поли-Ь-лизин и поли-а,Ь-глу-таминовая кислота не вызывают образования антитела [1017]. Хорошие антигены были также получены из сополипептидов Ь-лизина или Ь-глу-таминовой кислоты с аминокислотой, содержащей гидрофобный остаток. [c.342]

    Хотя рассмотренные периодические граничные условия особенно наглядны в случае единичных кристаллических ячеек, они могут успешно переноситься и на растворы. В этом случае необходимо определить размер единичной ячейки и расстояние, до которого ведется расчет энергии (пороговое расстояние) и учитывается влияние дальнодействующих сил. Хаг-лер с сотр. [22] методом Монте-Карло изучили поведение Ы -метиламида Л-ацетилаланина в водном растворе. Данная молекула представляет интерес как классическая модель обладающего химическими признаками полипептида. Эта молекула имеет достаточное число степеней свободы (5) для существования различных конформаций. В растворе оказывается возможным учитывать только влияние воды на предпочтительность конформаций пептида и пренебрегать влиянием растворенного пептида на структуру воды. В результате выполненных расчетов были получены следующие данные о поведении Ы -метиламида N-aцeтилaлaнинa в растворе  [c.576]

    Цепи молекул белков и полипептидов построены из разнообразных остатков /-аминокислот. Помимо соединяющих их пептид )ых связей —СО—ЫН— аминокислотные остатки связаны большим числом водородных связей с удаленными остатками в результате их конформации. Условия максимального насыщения водородных, связей и максимальной плотности упаковки аминокислотных остатков приводят к свертыванию цени в предельное устойчивое состояние по типу а-спирали, обеспечивающему максимальное удаление боковых радикалов. Другим устойчивым предельным состояН 1см является неупорядочное свертывание — статистический клубок. [c.287]

    Наличие в молекулах полиэлектролнтов групп различной природы определяет возможность возникновения взаимодействий разных видов (электростатических, гидрофобных, водородных связей) и повышенную по сравнению с нейтральными полимерами склонность цепей полиэлектролитов к конформационным изменениям при изменении pH, температуры раствора, природы растворителя. Об изменении конформации макромолекул можно судить по значению параметра а уравнения Марка — Куна — Хаувинка [т]] = = КМ . Известно, что а зависит от конформации макромолекул в растворе и изменяется от нуля для очень компактных клубков до 2 для палочкообразных частиц. Для многих глобулярных белков а = 0. В растворе сильного полиэлектролита при достаточно высокой ионной силе раствора а = 0,5, т. е. цепь имеет конформацию статистического клубка с уменьшением ионной силы параметр а увеличивается и при ионной силе, близкой к нулю, стремится к а = 2. Для слабого полиэлектролита в заряженной форме, а также для полипептидов в конформации а-спирали а = = 1,5—2. [c.123]

    Спектрополяриметрический метод был использован для изучения изменений конформации, вызываемых введением дополнительных пептидных цепей в молекулу инсулина по трем его свободным аминогруппам [15]. Исходный инсулин спирален на 25%, модифицированный лизином — на 32—33%, модифицированный глутаминовой кислотой — на 3—16%. Если к растворам синтетической полиглутаминовой кислоты добавить некоторые красители (акридин оранжевый, псевдоизоцианин) и измерить дисперсию оптического вращения в области 560—360 нм, то при pH 5,5 кривая ДОВ имеет плавный характер (полимер в неупорядоченной конформации) при pH ниже 5,1, когда полимер приобретает спиральную конформацию, дисперсия оптического вращения становится аномальной, причем величина вращения резко возрастает. Это связано с адсорбцией красителя на спиральной полипептидной цепи, в результате чего полоса поглощения красителя становится оптически активной [16]. Дальнейшее развитие спектрополяриметрического метода позволило перейти к прямому измерению эффекта Коттона в области 185—240 нм, непосредственно связанного со спиральностью молекул белков и полипептидов (обзор см. [17]). [c.638]

    Так как при статистическом анализе невозможно учесть взаимодействия боковых цепей и определить их конформации, то и нельзя на основе эмпирического подхода прийти к пониманию принципов пространственной организации белковой молекулы. Ведь именно сложнейшая, строго упорядоченная, однако не сводящаяся к регулярной, система взаимодействий боковых цепей специфична для каждого природного аминокислотного порядка, а поэтому только она и ответственна за практически беспредельное многообразие трехмерных структур белковых молекул и их динамических конформационных свойств. Реализующееся пространственное строение белка определяется конкретной аминокислотной последовательностью. В силу уникальности последней ее нативная геометрия непредсказуема на основе среднестатистических характеристик уже изученных белков. Вероятностный подход адекватен синтетическим полипептидам, строение и свойства которых статистичны и описываются равновесной термодинамикой и статистической физикой. Белок же в физиологических условиях однозначно детерминирован как в отношении своих конформационных свойств, так и функции, и должен являться объектом рассмотрения нелинейной неравновесной термодинамики. [c.80]

    Другая серьезная проблема, возникающая при учете электростатических взаимодействий, связана с диэлектрической проницаемостью е. Выше отмечалось, что этот параметр характеризует макроскопическое свойство среды ослаблять взаимодействие зарядов, находящихся на большом расстоянии друг от друга. В конформационном анализе одной молекулы такая трактовка параметра е, строго говоря, теряет смысл. Тем не менее от использования диэлектрической проницаемости не отказались и вводят В расчет в виде эмпирического параметра, величина которого может существенно отличаться от величины известной физической константы. Определение е, используемой в конформационном анализе, связано с большими трудностями и вряд ли является однозначным. В отсутствие молекул растворителя в промежутке между близко расположенными атомами значение диэлектрической проницаемости определяется поляризуемостью взаимодействующих атомов и полем, создаваемым окружающими атомами и молекулами растворителя. Для неполярной среды Брант и Флори рекомендуют величину е = 3,5 [86]. Выбор был сделан при сопоставлении результатов конформационного анализа полипептидов с опытными данными. В работе Скотта и Шераги, посвященной конформационному анализу регулярных структур полипептидов, значение е варьируется от 1 до 4, что, однако, мало сказывается на профиле потенциальной поверхности [85]. Учитывая величину диэлектрической проницаемости в алкиламидах (е = 4), значения от 1 до 4 можно считать разумными при оценке электростатических взаимодействий атомов полипептидов в неполярных средах. В случае водных растворов значение зф должно быть больше, так как для самой воды е = 81 и, что весьма важно, вода при образовании водородных связей оттягивает на себя заряды атомов амидной группы. С. Кримм и Дж. Марк в расчете конформаций полипептидов с заряженными группами в водной среде использовали величину е, равную 10 [95]. В работе Е.М. Попова и соавт. [96] была рассмотрена возможность учета влияния растворителя на конформационное равновесие низкомолекулярных пептидов в рамках механической модели. Наилучшее совпадение с экспериментальными данными было получено при е = 4 для растворов в ССЦ, е = 6-7 - СНСЦ и е = 10 - Н2О. [c.119]

    В упомянутых исследованиях основное внимание уделялось спиральным конформациям гомополипептидов, на которые в то время возлагали большие надежды как на ближайших структурных аналогов белков. Действительно, пространственное строение синтетических полипептидов и белков определяется одними и теми же видами взаимодействий между валентнонесвязанными атомами и одинаковой природой этих взаимодействий. Химическая регулярность синтетических полипептидов допускает реализацию ограниченного числа периодических структур, которые, как показали рассмотренные исследования, сравнительно легко оцениваются теоретически. Они-то прежде всего и привлекали к себе внимание, поскольку трехмерные структуры белков представлялись в соответствии с концепцией Полинга-Кори набором регулярных вторичных структур. Автор не стоял на этих позициях и уже тогда был убежден, что гетерогенность аминокислотных последовательностей белков должна вести не только к регулярным, но главным образом к множеству апериодических структур. Наши исследования в данной области, начавшиеся в 1968 г, [20] также под влиянием работы Рамачандрана и соавт. [58], имели иное назначение. Они были направлены исключительно на изучение конформационных возможностей свободных монопептидов и после своего завершения составили содержание первого этапа на пути к решению структурной проблемы белковых молекул. Главные цели этих первых конформационных иссле- [c.156]

    В последующих главах рассматриваются результаты конформацион-1 0го анализа большой серии природных олигопептидов. Их пространст- енное строение практически полностью определяется взаимодействиями ежду близко расположенными в цепи остатками, и поэтому они представляют собой естественные объекты исследования средних взаимодействий. Здесь нельзя было ограничиться анализом единичных примеров в силу по крайней мере двух обстоятельств. Во-первых, изучение конформационных возможностей природных олигопептидов является, как станет ярно позднее, самым ответственным и сложным, но в то же время 1 иболее интересным этапом на пути к априорному расчету трехмерных структур белков. Очевидно, понимание пространственного строения и механизма спонтанной, быстрой и безошибочной укладки белковой последовательности в нативную конформацию невозможно без установления инципов пространственной организации эволюционно отобранных низко- лекулярных пептидов. Между природными олиго- и полипептидами нет четко очерченных границ, и количественная конформационная теория лее простых молекул является естественной составной частью конформационной теории более сложных соединений той же природы. Во-вторых, Й1ание пространственной организации и динамических конформационных свойств природных олигопептидов - гормонов, антибиотиков, токсинов и т.д. - необходимо -вакже для изучения молекулярных механизмов узнавания, действия и регуляции биосистем, выявления структурно-функциональных особенностей пептидов и белков. [c.233]

    Для проверки теории пространственной организации олигопептидов, физической молекулярной модели и расчетной схемы априорного конформационного анализа были использованы два подхода. Первый из них не требует для оценки результатов расчета знания экспериментальных фактов о пространственной структуре молекулы. Он основан на выборе для теоретического исследования таких объектов, расчет которых содержит внутренний, автономный контроль своих результатов. Как показано ниже, можно считать с высокой степенью вероятности, что решение конкретной задачи при наличии подобного контроля доводится до конца только при получении правильных результатов. Во втором случае достоверность метода подтверждается путем сопоставления данных теоретического конформационного анализа олигопептидных фрагментов с геометрией соответствующих участков трехмерной структуры белка, установленной с помощью рентгеноструктурного анализа. Поскольку разработанная автором конформационная теория белковых молекул включает все элементы теории пространственной организации олигопептидных молекул, то полное совпадение расчетной конформации с нативной структурой белка можно считать убедительным доказательствам справедливости теоретического подхода к априорному расчету пространственного строения не только природных полипептидов, но и олигопептидов. [c.290]

    Код А-А, согласно Меклеру (табл. 1У.21,<з), играет ключевую роль в механизме самопроизвольного построения физиологически активной конформации белка. Напомню, что он должен определять узнавание и связывание двух аминокислотных остатков полипептидной цепи, один из которых кодируется кодоном, а другой - антикодоном. В работе [352. С. 44] говорится "Трехмерные молекулы полипептидов и белков строятся согласно коду А-А непосредственно по ходу их синтеза рибосомами в результате последовательного образования - шаг за шагом - соответствующей совокупности А-А-связей формально так же, как строятся трехмерные молекулы полинуклеотидов в результате образования между их нуклеотидами соответствующей совокупности Н-Н-связей". Если это так, то в структурах белков должна наблюдаться избирательная сближенность остатков аминокислот с остатками антиаминокислот и существование кода А-А легко проверяется экспериментально. Такой контроль мог бы быть проведен уже к моменту появления первой публикации, посвященной стереохимическому коду. Кстати, если бы это произошло, то положительный результат проверки оказался бы единственным и весомым опытным фактом в пользу гипотезы о специфической перекрестной стереокомплементарности аминокислот. К 1969 г. были известны трехмерные структуры около десяти белков, так что получить количественное представление о частоте контактов между определенными амино- [c.533]


Смотреть страницы где упоминается термин Полипептиды конформация молекул: [c.28]    [c.125]    [c.133]    [c.28]    [c.491]    [c.225]    [c.30]    [c.188]    [c.265]    [c.55]    [c.155]    [c.207]    [c.245]    [c.388]    [c.470]    [c.60]   
Курс органической химии (0) -- [ c.381 , c.383 ]




ПОИСК





Смотрите так же термины и статьи:

Конформации полипептидов

Конформация молекул

Полипептиды



© 2024 chem21.info Реклама на сайте