Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие понятия о коллоидных растворах

    Устойчивость большинства нефтяных эмульсий типа В/Н со временем возрастает, т. е. Эмульсия стареет. В данном случае понятие старение" эмульсии ничего общего не имеет с понятием старения коллоидных растворов. Для разрушения эмульсии после старения требуются более жесткие условия и увеличенный расход эффективного деэмульгатора. [c.22]


    Для общего описания дисперсных систем обычно используют понятие дисперсность, характеризующее степень измельченности дисперсной фазы. Дисперсность выражается через средний диаметр частиц дисперсной фазы или удельную поверхность раздела фаз. По дисперсности системы подразделяются на грубодисперсные — со средним диаметром частиц от 100 до 10 ООО нм, и коллоидно-дисперсные — со средним диаметром частиц от 1 до 100 нм коллоидно-дисперсные системы часто называют коллоидными растворами. [c.269]

    Книга — второе, переработанное и дополненное издание курса коллоидной химии, являющегося учебником для химико-технологических вузов (1-е издание вышло в 1964 г.). В ней изложены общие понятия и законы коллоидной химии,, описаны свойства коллоидных систем, методы их исследования и приложение коллоидной химии к решению практических задач. Отдельная глава посвящена высокомолекулярным веществам и их растворам. Наиболее переработаны введение, главы, посвященные адсорбции, и глава, в которой рассматривается устойчивость и коагуляция коллоидных систем. [c.2]

    Общая классификация дисперсных систем. Понятие о коллоидных растворах [c.220]

    Понятие о буферных растворах 2 7 5.9. Общая классификация дисперсных систем. Понятие о коллоидных растворах 220 [c.723]

    В этой и последующих главах рассматриваются системы, переходные состояния которых характеризуются, помимо уже рассмотренных параметров (давления, температуры, расхода и числа оборотов), параметром состав. Состав — общее понятие, относящееся к качественному и количественному описанию смеси. Количественное описание обозначают термином концентрация. (Следовательно, речь идет о составе смеси , а не о концентрации смеси и, наоборот, о концентрации фаз в смеси , а не о составе фаз в смеси .) Речь может идти о смесях твердых, жидких или газовых фаз, т. е. о гетерогенных и гомогенных (растворы) смесях и даже о коллоидных растворах. Переменная величина состав служит отличием химических систем от всех ранее рассмотренных систем. [c.420]

    Та или иная дисперсная система предназначена для выполнения определенных функций служить исходным материалом для формования строительной конструкции, если это цементная смесь исполнить роль защитной или декоративной краски, если это суспензия пигмента подчинить движение жидкости воздействиям магнитного поля, если это коллоидный раствор ферромагнетика, и т. д. Возможность дисперсной системы выполнить предназначенную ей функцию зависит от ее рецептуры — наличия в составе системы частиц вяжущих, окрашенных или магнитных материалов. Однако качество продукта и технологичность его применения и получения определяются общим свойством любых дисперсных систем вне зависимости от их рецептуры — их устойчивостью. Устойчивость — это способность системы сохранять постоянство своих свойств во времени или при достаточно сильном изменении условий. Среди разнообразных свойств всеобъемлющим является равномерность распределения дисперсного материала по всему объему системы. Она определяется многими факторами, к числу которых относится устойчивость к некоторым частным конкретным изменениям состояния системы, среди которых наиболее важна устойчивость против коагуляции и оседания частиц. Терминология, касающаяся устойчивости, сложилась до того, как были выявлены многие детали и варианты изменения состояния взвесей. По этой причине толкование ряда понятий приобрело неоднозначность. Так, коагуляция — это слипание частиц и, кроме того, разрушение дисперсной системы, при которой происходит ее разделение на фазы осадок, дисперсионную среду. Слипание частиц, сопровождающееся не разрушением, а лишь изменением состояния системы, иногда желательным и полезным. Агрегативная устойчивость — способность дисперсной системы противостоять слипанию частиц в том или ином понимании сути этого явления. Слипание может быть разным как по характеру, так и по силе сцепления частиц. Понятие кинетической устойчивости обычно характеризует способность взвеси противостоять расслаиванию (оседанию частиц) за некоторый конечный интервал времени. Термодинамическая устойчи- [c.624]


    Применительно к нефтяным дисперсным системам, являющимся типичными лиофильными коллоидами, традиционно используют прикладное понятие - коллоидную стабильность, включающее по существу, оба вида устойчивости. Понятие это впервые было введено в 30-х годах для оценки способности пластичных смазок удерживать (или в минимальной степени выделять) дисперсионную среду. Значительно позже стали определять и изучать коллоидную стабильность масел. Такая необходимость появилась прежде всего в связи с постоянным увеличением в товарных маслах количества присадок и с ужесточением температурных условий применения масел. В общем случае коллоидная стабильность в специальной литературе рассматривается в основном как. способность присадки или присадок не вьшадать из масляных растворов в осадок в условиях применения или при длительном хранении масла, т.е. их способность сохранять свою однородность. В настоящее время коллоидная стабильность масел в значительной степени определяет уровень качества многих товарных масел, хотя до сих пор практически не учитьшается при выборе оптимальных режимов их производства. [c.22]

    Общие понятия о коллоидных растворах [c.91]

    Застудневание. Второй формой явной коагуляции лиофильных золей, включая в это понятие и растворы полимеров и коллоидные раствору в узком смысле, является процесс застудневания, или желатинирования. Точнее сказать, застудневание представляет собою лишь особый этап в общем процессе явной коагуляции. От другой формы явной коагуляции—высаливания—застудневание отличается тем, что при нем не происходит разделения системы на две фазы с образованием осадка, а вся система в целом переходит в особую, как бы промежуточную форму своего существования— студень (или по старой терминологии—гель). С этого промежуточного этапа явная коагуляция легко может перейти в заключительный этап также в виде двух форм или в виде высаливания, происходящего, как мы видели, при избыточном действии солей, или в виде так называемого синерезиса. [c.225]

    В научно-технической литературе существует несколько определений понятия эмульсии но наиболее общим является следующее [12-16] эмульсия - это гетерогенная система, состоящая из двух несмеши-вающихся или мало смешивающихся жидкостей, одна из которых диспергирована в другой в виде мелких капелек (глобул) диаметром, превышающим 0,1 мкм. Дисперсная система с более мелкими частицами (менее 0,1 мкм) принадлежит уже к коллоидному раствору. Обычно в устойчивой эмульсии присутствует стабилизатор, который называют эмульгатором. [c.14]

    Р. С. Толмэн указывал, что такие величины, как удельный объем, удельная оттальпия и удельная внутренняя энергия (полученные из общего объема, энтальпии, внутренней энергии и веса системы), являются интенсивными по характеру. Без ущерба для точности это утверждение справедливо и для удельного объема, удельной энтальпии или удельной внутренней энергии гетерогенных систем. В то же время нельзя оперировать понятиями коэффициента преломления, вязкости и некоторых других подлинно интенсивных свойств применительно к гетерогенной системе, так как в этом случае их эффективное значение зависит не только от относительного количества фаз, но и от степени их дисперсии, или других факторов, являющихся сложными функциями давления, температуры и веса каждого компонента. Термодинамическое состояние гетерогенной системы не может быть точно зафиксировано до тех пор, пока не будет установлена конфигурация ее различных частей. В пределах обычных изменений конфигурации, которые имеют место в инженерной практике, аа исключением коллоидных растворов или других случаев, характеризующихся высокими удельными поверхностями или необыкновенно большой разностью высотных отметок, конфигурация не оказывает заметного влияния на термодинамическое состояние системы. [c.177]

    Внутреннее трение. Оно обусловлено обменом количества движения между мельчайшими неделимыми частицами тел. В нормальных жидкостях, предста1вляющих собой индивидуальные химические соединения или смеси полностью взаимно растворяющихся индивидуальных химических соединений, а также в истинных (молекулярных) растворах твердых тел в нормальных жидкостях такими мельчайшими неделимыми частицами являются отдельные молекулы или их ассоциированные соединения. Внутреннее трение нормальных жидкостей представляет собой физическую константу, которую называют вязкостью. Внутренним трением обладают также дисперсии, которые не относятся к гомогенным однофазным системам. Внутреннее трение дисперсий, к которым принадлежат коллоидные растворы, эмульсии и суспензии, складывается из внутреннего трения дисперсионной среды и дополнительных сопротивлений, создаваемых элементами дисперсной фазы. Однако для такого рода систем внутреннее трение не является физической константой это суммарное проявление элементарных свойств, присущих каждой фазе в отдельности, и их взаимного влияния, чрезвычайно сильно зависящих от условий течения. По аналогии с вязкостью нормальных жидкостей внутреннее трение дисперсных систем также называют вязкостью, добавляя к нему определение аномальная , структурная , эффективная и т. д. Правильнее было бы сохранить название вязкость только для внутреннего трения тех тел, для которых оно является физической константой. Для тех тел, для которых внутреннее трение представляет собой переменную величину, изменяющуюся в различных условиях течения, предпочтительно говорить о внутреннем трении, как об общем понятии, определяющем суммарное со- [c.9]


    Понятие дисперсность неделесообразно распространять на гомогенные (молекулярные) растворы, на отдельные атомы, электроны, ядра и многие другие объекты, ибо это привело бы к потере специфических особенностей содержания, сохраняя лишь идею дискретности (зернистости) материи. Конечно, такое ограничение условно, и наиболее общие закономерности, связывающие воедино коллоидные системы с молекулярными, атомными, ядерными (например, гипотеза капельно-жидкого состояния ядра атома) и другими, могут быть установлены лишь на основе универсальности понятия дисперсности. Однако в начале изучения коллоидной химии целесообразно прежде всего уяснить специфику ее объектов. Таким образом, понятие дисперсности мы будем применять лишь к крупным (относительно обычных молекул) частицам и макромолекулам. В соответствии с этим все дисперсные системы можно классифицировать следующим образом  [c.6]

    Основными миграционными формами нефтяных загрязнений в природных водах являются загрязнения в виде масляной фазы, а также раст-ворейная, эмульгированная и адсорбированная на диспергированных частичках нефть или нефтепродукты. Наиболее опасной для подземных вод является растворенная форма, ввиду возможности миграции на большие расстояния. При этом особенную опасность для загрязнения подземных вод представляют нефти и нефтепродукты, обладающие малой вязкостью и заметной растворимостью. Такими нефтепродуктами прежде всего являются бензины, керосины, а также дизельные топлива и сама нефть. По данным газохроматографических исследований, в истинный раствор переходят преимущественно моноядерные ароматические углеводороды (71—99 %) бензол и его гомологи С7—С9 и в меньшей степени олее высокомолекулярные, в том числе и нафталины. Большинство из этих углеводородов высокотоксичны. При этом общая молекулярная растворимость указанных видЬв топлив варьирует в интервале, мг/л для бензина 5—505, керосина 2-5, дизельного топлива 8-22, нефти 10-20. Следует также учитывать возможность повышения их растворимости (коллоидной) в присутствии ПАВ, в роли которых могут выступать как искусственные, так и природные (соединения гумусовых, высокомолекулярных жирных кислот и др.) вещества. На данном уровне наших знаний пока трудно оценить все опасности загрязнения подземных вод нефтепродуктами. Из-за сложностей аналитического контроля понятие нефтепродукты ограничено суммой неполярных и малополярных углеводородов (алифатических, ароматических, алициклических), составляющих главную и наиболее характерную часть нефти и продуктов ее переработки. С неразработанностью аналитических методов связано отсутствие или недостаточная информация об уровнях поступления в водный раствор канцерогенных полициклических ароматических углеводородов (ПАУ) при загрязнениях различными видами топлив в различной природной обстановке, попадании в водные источники имеющихся в нефтепродуктах серо-, азот-, кислородсодержащих соединений. Еще очень мало данных о процессах трансформации нефтепродуктов в подземных водах. Между тем деградация особенно высокомолекулярной части и неуглеводородных примесей может сопровождаться появлением и более токсичных и опасных для здоровья продуктов, чем исходные. [c.180]


Смотреть главы в:

Аналитическая химия -> Общие понятия о коллоидных растворах




ПОИСК





Смотрите так же термины и статьи:

ГЛАВА vui Вязкость и пластичность коллоидных растворов и растворов высокомолекулярных соединений Общие понятия о деформации и течении дисперсных систем

Растворы коллоидные



© 2025 chem21.info Реклама на сайте