Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные системы осмотические свойства

    Методы определения ККМ основаны на резком изменении физико-химических свойств растворов ПАВ (например, поверхностного натяжения а, мутности т, эквивалентной электропроводности У., осмотического давления л, показателя преломления п). На кривой зависимости свойство — состав в области ККМ обычно появляется излом (рис. VI. 6). Одна из ветвей кривых (при более низких концентрациях) на рис. VI. 6 описывает свойства системы в молекулярном состоянии, а другая — в коллоидном. Абсциссу точки излома условно считают соответствующей переходу молекул в мицеллы, т. е. критической концентрацией мицеллообразования. Очевидно, что при ККМ существует весьма незначительное число мицелл. Ниже приводится краткое описание некоторых методов определения ККМ. [c.302]


    Наряду с дисперсными системами в курсе коллоидной химии изучают свойства растворов высокомолекулярных веществ (ВМВ). Эти системы принципиально отличны от коллоидных систем. Растворы ВМВ — гомогенные термодинамически устойчивые обратимые системы, которые образуются самопроизвольно и по своей природе являются истинными молекулярными растворами. Однако при всех различиях их объединяет с коллоидными системами такой важный признак, как размер частиц. Молекулы ВМВ — макромолекулы как и коллоидные частицы, состоят из многих тысяч атомов. С этим связаны схожесть оптических свойств, малая скорость диффузии, низкое осмотическое давление у тех и других систем. [c.460]

    К микрогетерогенным и грубодисперсным системам относятся суспензии, эмульсии, аэрозоли, порошки см. гл. VI, 2). По сравнению с коллоидными частицами в этих системах частицы дисперсной фазы имеют значительно большие размеры и они уже видны в оптический микроскоп. В микрогетерогенных и грубодисперсных системах не проявляются такие молекулярно-кинетические свойства, как броуновское движение, диффузия, осмотическое давление. [c.221]

    Свойства, связанные с тепловым движением частиц, — броуновское движение, диффузия, осмотическое давление, —у коллоидных систем выражены гораздо слабее, чем в низко-молекулярных растворах, вследствие относительно больших размеров коллоидных частиц. Все эти свойства находятся в прямой зависимости от степени дисперсности и могут быть использованы для определения размеров и формы коллоидных частиц. Рассмотрим явления диффузий и осмотического давления в коллоидных системах. [c.252]

    Варианты анализа высокодисперсных систем уже рассмотрены нами в предыдущих главах. Они основаны на изучении молекулярно-кинетических и оптических свойств — диффузии, осмотического давления, среднего сдвига частиц, светорассеяния (нефелометрия, ультрамикроскопия), седиментационно-диффузионного равновесия (ультрацентрифуга), а также на применении методов электронной микроскопии и дифракции электронов. Эти методы дают сведения главным образом о среднем размере частиц. Для многих целей такая характеристика является достаточной, тем более что в коллоидных системах вариации дисперсности обычно не очень велики. [c.45]

    Коллоидные системы по своим молекулярно-кинетическим свойствам (броуновскому движению, диффузии, осмотическому давлению, седиментации) отличаются от растворов низкомолекулярных веществ, главным образом, лишь благодаря более значительным размерам своих час- [c.50]


    Некоторые растворенные вещества практически не диффундируют или диффундируют весьма медленно по сравнению с другими (см. гл. I). Это служило одним из отличительных признаков коллоидных раствор(ЭВ. В дальнейшем отличительным признаком коллоидных растворов стали считать также то, что они не обнаруживают вовсе или обнаруживают ничтожно малое осмотическое давление. Понадобилось очень много времени и труда для того, чтобы установить, что эти различия между коллоидами и истинными растворами не являются качественными, а носят только количественный характер. Нет качественной разницы между молекулярно-кинетическими свойствами истинных растворов и коллоидных систем. Молекулярно-кинетические представления об истинных растворах применимы и к коллоидным системам. [c.19]

    Растворы высокомолекулярных соединений, ранее рассматривавшиеся как гидрофильные коллоидные системы, обладают свойствами, присущими гидрофобным коллоидно-дисперсным системам (медленной диффузией, низким осмотическим давлением, способностью к диализу, светорассеянием, двойным лучепреломлением при течении и др.). Поэтому такие примеси и загрязнения воды целесообразно рассматривать в одной группе с веществами, образующими коллоидные растворы. [c.53]

    Как правило, микрогетерогенные системы седиментационно неустойчивы. В этой связи в них нельзя наблюдать, как в коллоидных системах, диффузионные и осмотические явления. Однако по другим свойствам микрогетерогенные системы во многом сходны с коллоидными. Например, они могут быть получены диспергационным и конденсационным методами, отличаются развитой поверхностью раздела фаз, обладающей значительной сорбционной активностью. [c.26]

    Типичные микрогетерогенные системы седиментационно неустойчивы частицы их Движутся под действием силы тяжести. Поэтому в них нельзя наблюдать диффузию и осмотические явления. Однако по остальным свойствам микрогетерогенные системы (особенно с жидкой дисперсионной средой) имеют много общего с коллоидными системами. Они так же, как и коллоиды, могут быть получены дисперсионным и конденсационным методами. Микрогетерогенные системы из-за развитой поверхности раздела фаз неустойчивы и термодинамически. Им можно придать агрегативную устойчивость, адсорбируя на их частицах ионы и поверхностноактивные вещества. Наиболее надежно стабилизируют микрогетерогенные системы (так же как и коллоиды) прочные студнеобразные пленки, образуемые мылами и высокополимерами. Исключение составляют системы с газообразной дисперсионной средой (сухие порошки, пыль, дымы, туманы), стабилизацию которых нельзя осуществить подобным путем. [c.133]

    В отличие от суспензий, частицы коллоидных систем находятся в непрерывном хаотическом движении и вследствие этого обладают осмотическим давлением и способностью к диффузии. Благодаря движению частиц, коллоидные системы кинетически устойчивы, т. е. в них не наблюдается оседания частиц под действием силы тяжести. Оптические свойства коллоидных систем также существенно отличны от свойств суспензий в то время как суспензии являются мутными при любых условиях освещения, коллоидные растворы в проходящем свете всегда прозрачны. [c.162]

    Свойственное коллоидным системам самопроизвольное изменение их свойств во времени, получившее название старения, проявляется и в явлениях осмоса. Осмотическое давление золей со временем постепенно уменьшается, что является результатом самопроизвольного процесса укрупнения частиц, уменьшающего частичную концентрацию золя. [c.178]

    Высокомолекулярные системы, ранее рассматривавшиеся как гидрофильные коллоидные системы, различаясь по природе устойчивости, обладают рядом свойств, присущих гидрофобным коллоидно-дисперсным системам (медленность диффузии, низкое осмотическое давление, неспособность к диализу, светорассеяние, двойное лучепреломление при течении и др.). Поэтому такие примеси воды вполне целесообразно рассматривать в одной группе с веществами, образующими коллоидные растворы.,  [c.50]

    Химически связанная вода обладает наибольшей энергией связи с материалом и при сушке гте удаляется. К физико-химически связанной влаге относят адсорбционно связанную и осмотически связанную воду. Адсорбционно связанная вода удерживается па внешней и внутренней поверхности коллоидных частиц (мицелл) адсорбционными (молекулярными) силами. Адсорбция воды мицеллами тела сопровождается выделением тепла и контракцией (сжатием) системы. Адсорбционно связанная вода по своим свойствам (плотность, теплоемкость и др.) отличается от свободной воды. Максимальное количество тепла выделяется при образовании первого слоя сорбированной влаги — мономолекулярного слоя, при образовании последующих полимолекулярных слоев прочность связей и выделение тепла уменьшаются. [c.32]

    Повышение дисперсности влечет за собой появление новых свойств системы. Так, при размерах около 0,1 мк частицы системы находятся в непрерывном хаотическом движении, благодаря чему способны диффундировать и создавать осмотическое давление. Такие системы называются коллоидными. [c.12]


    Главное отличие гидрофильных коллоидных систем от гидрофобных состоит в том, что их коллоидно-дисперсная составная часть не образует таких плотных, компактных ядер, как мицеллы гидрофобного коллоида. Коллоидное вещество в гидрофильных золях находится в виде отдельных крупных молекул, образуя молекулярный раствор. Коллоидные свойства такого раствора являются следствием огромного размера подобных молекул. В иных случаях молекулы гидрофильного коллоида могут соединяться между собой, образуя мицеллы. Однако эти мицеллы в корне отличаются от мицелл таких веществ, как AsgSa или Fe(OH)g. Вода полностью пронизывает мицеллы гидрофильных коллоидов, чего нельзя сказать о коллоидах гидрофобных. В последних вода связывается только за счет процесса гидратации. В гидрофильных системах вода связывается более сложными и разнообразными путями. В частности, значительное количество воды впитывается мицеллой гидрофильного коллоида как осмотической ячейкой (вода набухания). Осмотическое впитывание растворителя ядром мицеллы гидрофобного коллоида невозможно вследствие плотного его строения. Различие формы связи растворителя с гидрофильным коллоидом и приводит к тому, что гидрофильные золи содержат значительно больше связанной воды, чем гидрофобные. [c.307]

    В истинных растворах молекулярно-кинетические свойства (скорость диффузии, осмотическое давление, понижение давления пара, повышение температуры кипения, понижение температуры замерзания и т. п.) при прочих равных условиях выражены в большей мере, чем в коллоидных. Чем больше степень дисперсности вещества, тем в большей мере преобладает хаотическое движение частиц над их стремлением к агрегации, и наоборот. При молекулярной степени дисперсности, когда стремление частиц к агрегации отсутствует, молекулярно-кинетические свойства молекул растворенного вещества реализуются на 100%. По мере же уменьшения степени дисперсности растворенного вещества стремление частиц к агрегации все более ослабляет их хаотическое движение. При некотором значении линейных размеров частиц стремление их к агрегации становится настолько преобладающим, что хаотическое движение частиц вовсе прекращается, а вместе с этим обращаются в нуль и все молекулярно-кинетические свойства системы (частицы дисперсной фазы при этом оседают на дно сосуда). [c.321]

    Наиболее характерной особенностью процесса иммобилизации растворителя является именно механический его захват. Такой растворитель не связан какими-либо силами с коллоидно-дисперсной фазой. Иммобилизация растворителя не сопровождается тепловым эффектом (в отличие от истинной сольватации) и не влечет за собой изменение объема коллоидно-дис персной фазы (в отличие от осмотической сольватации). Свойства растворителя не изменяются — он лишь иммобилизован . Вязкость же системы увеличивается потому, что свободного растворителя, вследствие иммобилизации, становится меньше. [c.354]

    Коллоидные системы по своим молекулярно-кинетическим свойствам (броуновскому движению, диффузии, осмотическому давлению, седиментации) отличаются от растворов низкомолекулярных веществ главным образом лищь благодаря более значительным размерам своих частиц. Поэтому многие основные методы установления размеров частиц в коллоидных системах основаны на определении поступательной и вращательной диффузии (П.6 и П.7), осмотического давления (П.9), седиментации в поле тяготения (П. 11) и в ультрацентрифугах (П.14, II.15), вязкости (II.19). [c.47]

    Первыми объектами исследований, положившими начало коллоидной химии, явились растворы природных высокомолекулярных веществ (ВС), обладающих клейкостью—желатин, крахмал, гуммиарабик и другие, так как такие растворы по их молекулярнокинетическим свойствам (малому осмотическому давлению, медленной диффузии и неспособностью проникать через полупроницаемые мембраны) похожи на коллоидные растворы. Это сходство объясняется тем, что размеры частицы, определяющие молекулярно-ки-нетнческие свойства обоих типов растворов (коллоидных и высокомолекулярных) довольно близки друг к другу и значительно превосходят размеры молекул истинных растворов. Однако растворы высокомолекулярных соединений, как уже было выше указано, принципиально отличаются от коллоидных. Частицы (мицеллы) в коллоидных системах — это агрегаты молекул, в то время как в растворах высокомолекулярных веществ — отдельные, гигантских размеров, молекулы. Коллоидные растворы представляют собой гетерогенные, термодинамически неравновесные, агрегативно неустойчивые системы. Для устойчивости коллоидных систем необходимо вводить стабилизаторы. [c.355]

    В настоящее время является общепризнанным, что растворы поверхностноактивных веществ образуют особый вид коллоидных систем, хотя в свое время, когда такая идея была впервые выдвинута Мак-Бэном, она считалась слишком радикальной. Коллоидный характер этих систем является очевидным по ряду критериев и прежде всего доказывается их осмотическими свойствами. Эти системы своеобразны в том отношении, что коллоидные агрегаты образуются в них самопроизвольно, путем ассоциации молекул или ионов, причем эти агрегаты находятся в обратимом термодинамическом равновесии с окружающей средой (растворителем и молекулярно растворенными частицами). Также общепризнано, что эти агрегаты (мицеллы) начинают образовываться в больших количествах лишь при достижении определенной сравнительно узкой области концентраций. Для случая достаточно больших агрегатов (состоящих из 20 и более ионов), образующихся путем ассоциации отдельных ионов, это было обосновано теоретически, исходя из закона действия масс, Бари с сотрудниками [53], который для этого интервала концентраций предложил термин критическая концентрация , ныне ставший общеупотребительным. [c.311]

    Растворы полимеров раньше рассматривали как коллоидные растворы (лиофильные золи). Однако в работах Флори, Добри, В. А. Каргина и др. было показано, что эти растворы, в особенности при невысоких концентрациях полимера, должны рассматриваться как обычные растворы, отличающиеся от последних внутренним строением, термодинамическими и другими свой-. ствами, что обусловлено лишь большой величиной и особенностями строения макромолекул полимеров и сильным различием в величине частиц полимера и растворителя. Наиболее отчетливо это проявляется для очень разбавленных растворов. Для этих растворов применимы обычные соотношения, характеризующие зависимость осмотического давления растворов и других свойств от их концентрации, однако все же следует учитывать очень большую величину макромолекул полимера и гибкость цепей. Подвижность отдельных звеньев цепей приводит к тому, что макромолекула может обладать очень большим числом конформаций. Вследствие этого соответственно увеличивается термодинамическая вероятность и, следовательно, энтропия системы. [c.601]

    Многие свойства дисперсных систем весьма сильно зависят от их дисперсности. Некоторые свойства проявляются сильнее при переходе от грубодисперсных к высокодисперсным системам, например, способность к диффузии и осмотическое давление. Другие свойства, наоборот, становятся заметнее с переходом от высокой дисперсности к низкой. К таким свойствам относится способность к седиментации (оседанию) частиц. Ряд свойств проявляется при промежуточных степенях дисперсности, отвечающих частицам коллоидных размеров. Это — светорассеяние, интенсиВ ность окраски коллоидных систем, кроющая способность пигмен- [c.22]

    На рис. Х1-14 приведены зависимости, описывающие физические свойства раствора додецилсульфата натрия — типичного коллоидного электролита [38, 39]. Как видно из этого рисунка, наиболее значительные изменения физических свойств соответствуют области так называемой критической концентрации мицеллообразевания (ККМ). Приблизительное постоянство,осмотического давления при концентрации детергента выше ККМ показывает, что в этих условиях протекает процесс, весьма сходный с выделением новой фазы. И хотя на самом деле никакого значительного разделения фаз здесь не наблюдается, резкое З/ величение рассеяния света свидетельствует о переходе системы в коллоидное состояние. Предложено хорошо аргументированное объяснение, согласно которому в области ККМ начинается агрегация длинноцепочечных электролитов в довольно большие заряженные частицы. Такие частицы обычно называют мицеллами. Детальное рассмотрение физической химии мицеллообразования несколько выходит за рамки этой книги. Однако это явление столь характерно для растворов детергентов, что о нем необходимо сказать хотя бы несколько слов. [c.380]

    Но коллоидная химия, как уже отмечалось (стр. 11—12), ставит своей задачей также изучение систем с физико-химическими свойствами, отличными от перечисленных свойств лиофобных золей. Издавна эти системы, типичными представителями которых являются растворы белков, целлюлозы, каучука, под названием лиофильных золей причислены также к золям, или, иначе, к псевдорастворам, т. е. системам гетерогенным, имеющим мицелляр-ное строение. Такому объединению этих систем послужила общность некоторых свойств, например неспособность частиц проходить через полупроницаемые мембраны (диализ и ультрафильтрация), сравнительно небольшая величина скорости диффузии и осмотического давления, особенно при малых концентрациях растворов высокомолекулярных соединений, а также способность под влиянием внешних факторов коагулировать и пеп-тизироваться. Основную роль в этом объединении сыграла близость степени дисперсности растворенного (взвешенного) компонента тех и других систем для золей 10 —10 смГ , для растворов ВМС примерно 10 —10 см . [c.151]


Смотреть страницы где упоминается термин Коллоидные системы осмотические свойства: [c.228]    [c.167]    [c.364]    [c.377]    [c.271]   
Курс коллоидной химии 1984 (1984) -- [ c.30 , c.31 ]

Курс коллоидной химии 1995 (1995) -- [ c.33 , c.34 ]

Курс коллоидной химии (1984) -- [ c.30 , c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Системы коллоидные

Системы свойства

Фаг осмотический шок



© 2025 chem21.info Реклама на сайте