Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные принципы автоматических методов HN-анализа

    В последнее время появилась возможность определять аминокислотный состав белков с помощью автоматических аминокислотных анализаторов. Когда в 1948 г. Мур и Стейн [551 в дополнение к классическим методам органической химии, а также манометрическому и бактериологическому анализу ввели ионообменную хроматографию, наступил поворотный момент в развитии химии аминокислот. В основу работы созданных сотрудниками Рокфеллеровского института современных автоматических аминокислотных анализаторов была положена ионообменная хроматография. Принцип работы этих приборов заключается в следующем. Исследуемый белок гидролизуют, затем гидролизат подвергают хроматографии на смоле типа дауэкс 50 х8 в Na-форме. Элюирование производят с помощью непрерывной подачи буферного раствора. Выходящий из колонки элюат попадает в пластмассовую ячейку особой формы, где он смешивается с раствором нингидрина. Подачу нингидрина осуществляет специальный насос, работающий синхронно с насосом, подающим буферный раствор на колонку. Затем смесь элюата с нингидрином проходит через тефлоновый капилляр, который погружен в кипящую баню. В этих условиях в растворах происходит нингидриновое окрашивание, интенсивность которого измеряется в проточной кювете спектрофотометрически. Поглощение света регистрируется самописцем. Применение сферических смол [80] позволило сократить время исследования одного образца примерно в четыре раза, а использование особых ячеек сделало вполне допустимыми для анализа очень малые количества исследуемого вещества — порядка 0,01—0,05 мкмоля [38]. Введение одноколоночной процедуры значительно упрощает метод [9, 29, 43, 60]. С помощью этой методики в одной и той же пробе можно определить кислые, нейтральные и основные аминокислоты, что не только экономит исследуемый материал, но и повышает точность и сокращает время исследования. Работая на стандартном аминокислотном анализаторе и пользуясь некоторыми модификациями известных методов, можно полностью закончить анализ одного вещества в течение 3 ч [91. [c.32]


    ТОЧНОСТЬЮ взвешивания сконструировал К. Хонда [244] на одном плече коромысла этих весов подвешен фарфоровый тигель, который можно опускать в печь. С появления первых термовесов и началась разработка нового аналитического метода — термогравиметрии теперь это отдельная ветвь аналитической химии. Основные принципы термогравиметрии установлены Ш. Дювалем [245], исследовавшим вместе с сотрудниками почти тысячу аналитических осадков и установившим температурные границы, выше которых вес осадков оставался постоянным. Дюваль использовал этот метод не только для определения оптимальных температур высушивания или прокаливания осадков в весовом анализе, но и для проведения дифференциального анализа, основанного на различии в температурах разложения двух осадков. Дюваль назвал этот метод автоматическим весовым анализом . [c.127]

    Таким образом, краткое рассмотрение основных методов газового анализа позволяет заключить, что практическая эффективность их применения в значительной мере снижается из-за недостатков, органически присущих тому или иному методу чрезвычайная длительность анализа для химических газоанализаторов и невозможность определения всех компонентов топочных газов автоматическими газоанализаторами. Поэтому принципы, используемые для автоматического непрерывного определения какого-либо одного из основных компонентов продуктов сгорания, в настоящее время используются не только для контроля горения, но и главным образом для создания различных схем автоматического управления и регулирования процессом горения. В этих схемах концентрации, например, СО2 или О2 используются в качестве основного или корректирующего импульса [252- 254], так как физические методы определения этих составляющих позволяют фиксировать весьма малые изменения их концентрации в двухкомпонентной газовой смеси. Возможность определения с большей точностью одного из двух компонентов смеси при помощи того или иного физического метода явилась предпосылкой для разработки хроматографического метода анализа продуктов сгорания. [c.264]

    Стратегические принципы изучения первичной структуры белка претерпевали значительные изменения по мере развития и усовершенствования применяемых методов. Следует отметить три основных этапа в их развитии. Первый этап начался с к лассической работы Ф. Сенгера (1953) по установлению аминокислотной последовательности инсулина, второй — с широкого введения в структурный анализ белка автоматического секвенатора (начало 70-х годов) и, наконец, третий — с разработки скоростных методов анализа нуклеотидной последовательности ДНК (А. Максам, В. Гилберт, Ф Сенгер, начало 80-х годов). [c.76]


    Основные принципы автоматических методов HN-анализа  [c.11]

    Приведен обзор основных направлений развития метода инверсионной вольтамперометрии (ИВ) твердых фаз. Рассмотрены рабогы последних трех лет, в основном доложенные на IV Всесоюзном совещании по полярографии. Обсуждаются варианты ИВ. Рассматриваются пять направлений 1) изучение кинетики разряда — ионизации металлов, способы повышения чувствительности и селективности 2) применение новых реакций и реагенто В для концентрирования ионов переменной валентности 3) определение различных валентных состояний твердых веществ 4) изучение кинетики образования и состава комплексов 5) использование принципов ИВ в автоматическом анализе. Илл. 5. Табл. 3. Библ. 12 назв. [c.204]

    При решении задач физико-химической механики возникает соблазн воспользоваться классическими моделями механики сплошных сред, дополнив их замыкающими соотношениями из смежных дисциплин - химической кинетики, нанример. С одной стороны, этот метод, безусловно, имеет право на существование, но, будучи применяем автоматически, может приводить к математически содержательным, но физически некорректным моделям. С другой стороны, использование замыкающих соотношений без должного анализа физических и химических особенностей всех протекающих при этом процессов и их следствий может привести исследователя в лучшем случае к удачным догадкам, по большому счету ничего не проясняющим и пе пригодным в дальнейшем. В результате такого экстенсивного получения результатов по физико-химической механике складывается парадоксальная ситуация - существует несколько математических моделей одного и того же явления или процесса, причем все модели математически корректны и, пусть и частично, подтверждаются экспериментально. В такой ситуации без серьезного сравнения физических основ всех моделей выбор модели, реализованной математически более изящно и эффектно, может быть ошибочен. В силу этого в книге основное внимание уделено именно физическим принципам, заложенным в основу развиваемых математических моделей, т. е. выяснению их физической корректности. [c.7]

    Однако попытки автоматического перенесения хорошо зарекомендовавших себя принципов, приемов и методов масс-спектраль-ного анализа легких и средних нефтяных фракций на высокомолекулярную часть нефти успеха, как правило, не приносят. Этому факту можно дать много достаточно убедительных объяснений — здесь и увеличивающееся с ростом молекулярных масс компонентов число теоретически возможных изомеров, и все возрастающие трудности моделирования подобных смесей из-за отсутствия эталонных соединений, и, как следствие, невозможность строгой метрологической аттестации таких аналитических методик. Однако основной, более глубокой и принципиальной причиной является, по-видимому, неправомочность применения формализма структурно-группового анализа к тяжелой высоко-моле1 улярной части нефти [2]. Эту часть нефти нельзя рассматривать как смесь независимых невзаимодействующих более простых составляющих (компонентов), так как экспериментально установлена зависимость поведения ее (в том числе и количества выпадающей из нее дисперсной фазы) от температуры, рода и количества растворителя [3], а энергия межмолекулярных взаимодействий в этой части нефти близка к энергии обычной С — С связи [4]. Ввиду перечисленных особенностей поведения тяжелой части нефти попытки воспроизводимого фракциошфова-ния ее на более простые составляющие могут оказаться (и практически оказываются) неудачными из-за малейших неконтролируемых вариаций препаративного процесса. Поэтому априорная регламентация качественного состава тяжелых нефтяных смесей — обычный прием при разработке и использовании методик структурно-группового анализа средних нефтяных фракций — недостаточно корректна. [c.113]

    Наиболее часто применяемые в настоящее время методы определения ООУ по принципу деструкции органических веществ можно разделить на три основные группы сухое термическое разложение органических веществ с последующим окислением продуктов пиролиза до диоксида углерода, мокрое низкотемпературное окисление с применением сильных окислителей и фотохимическое разложение органических веществ под действием жесткого УФ-излучения. Результаты определения выражают не в количестве кислорода, необходимого для окисления органических веществ, а непосредственно в содержании углерода. Окисление обычно идет до выделения СОг или СН, которые определяются ИК-спектрометрами и другими современными анализаторами [173]. Автоматический анализ для определения малых количеств органических соединений делает этот метод перспективным. Однако уровень оснащенности аналитических лабораторий отрасли, постоянно изменяющийся состав стоков буровых предприятий, ненормируемость показателя ООУ для различных направлений утилизации отходов бурения не позволяют применять ООУ для оценки содержания органических веществ в отходах бурения. На данном этапе [c.143]



Смотреть страницы где упоминается термин Основные принципы автоматических методов HN-анализа: [c.136]    [c.309]    [c.351]    [c.479]   
Смотреть главы в:

Методы количественного органического элементного микроанализа -> Основные принципы автоматических методов HN-анализа




ПОИСК





Смотрите так же термины и статьи:

Автоматические методы

Анализ основные методы

Метод принцип

Методы автоматического анализа

ОСНОВНОЙ ПРИНЦИП МЕТОДА



© 2025 chem21.info Реклама на сайте