Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы исследования механизма твердофазных реакций

    Методы исследования механизма твердофазных реакций [c.114]

    Построив различные математические модели для экспериментальных кинетических кривых, необходимо выбрать те из них, которые адекватно описывают данные эксперимента. Проанализировав результаты математической обработки экспериментального материала с учетом данных других методов исследования (в частности, рентгенофазового, термогравиметрического, магнитного анализа), можно сделать вывод о механизме твердофазной реакции, т. е. предположить, какая стадия является лимитирующей при заданной температуре. [c.279]


    Становление химии твердого тела как науки началось с исследования химической связи и структуры кристаллов, с выявления роли дефектов кристаллов в химических реакциях, механизма диффузионных явлений в твердых телах, термодинамических и кинетических закономерностей твердофазных превращений. Развитие методов инициирования реакций в твердых телах привело к использованию достижений радиационной химии, фотохимии, физики твердого тела, материаловедения, механохимии. [c.45]

    ДТГА и ТГА — методы, развивающиеся ныне очень широко. Повышение чувствительности в измерении температуры и массы образцов позволяет применить эти методы к изучению кинетики и механизма твердофазных реакций, построению диаграмм состояния многокомпонентных систем, определению характера плавления, летучести индивидуальных соединений. Обязательным является предварительное исследование температурных пределов устойчивости аналитических осадков и продуктов их разложения. [c.229]

    Для изучения механизма твердофазных реакций применяются различные методы, среди которых наибольшую популярность получили метод Тубанда — Вагнера и метод меченых граничных поверхностей, предложенный Бенгсоном и Ягичем [64]. В первом из них о направлении массопереноса в ходе реакции судят по изменению массы отдельных реагентов и продукта. На рис. 2.17 представлены результаты исследования по методу Тубанда — Вагнера твердофазной реакции [c.114]

    При реакциях между твердыми веществами наряду с процессами, протекающими на поверхности раздела фаз, и процессами образования зародышей кристаллов при образовании новой фазы большое значение имеют также процессы переноса в кристаллах. Для ускорения относительно медленной объемной диффузии необходим подвод тепловой энергии. Поэтому все реакции между твердыми веществами, как правило, проводятся при повышенных температурах. П(зскольку химическая активность твердых веществ в значительной мере определяется их структурой и величиной поверхности, исходные вещества перед проведением реакции размалывают в тонкий порошок или измельчают каким-либо иным способом, т. е. переводят вещества в состояние с сильно развитой поверхностью. Тем самым осуществляется активация за счет механической энергии (разд. 33.9.2.6). Для проведения реакций между твердыми соединениями чаще всего используют смеси порошков или прессованные таблетки. Для установления равновесия обычно требуется постепенное нагревание до довольна высокой температуры. Для исследования конечных продуктов и кинетических измерений особенно удобны структурно-аналитические и физические методы анализа. При определении механизмов реакции было установлено, что в некоторых твердофазных реакциях перенос компонентов реакции происходит через газовую фазу. [c.437]


    Следует иметь в виду, что течение многих твердофазных реакций, записываемых простыми уравнениями, фактически является весьма сложным. Часто они сопровождаются побочными процессами, влияющими на оптические свойства люминофора. Так, при взаимодействии сульфида цинка с селенистым ангидридом, помимо реакции (IX.2), происходит образование окиси цинка, к наличию которой люминофоры на основе ZnSe весьма чувствительны. Еще сложнее обстоит дело в случае более широкого применяемого на практике синтеза ZnSe из ZnS и НгЗеОз [43]. Кроме того, как уже указывалось, твердофазные реакции идут медленно и часто не доходят до конца. Поэтому изучение гетерогенных равновесий нужно сочетать с исследованием механизма и кинетики процессов в различных условиях их осуществления, для чего могут быть использованы перечисленные экспериментальные методы, включая, конечно, химический анализ продуктов. [c.269]

    Очень важные, но отнюдь не исчерпывающие сведения о механизме дает детальное определение структур реагирующих веществ, промежуточных соединений, продуктов реакций и взаимосвязи между ними. Однако используемые для этих целей методы позволяют точно определить структуру лишь в случае газов и твердых кристаллических веществ. Реакцию в твердой фазе можно достаточно тщательно контролировать, проследив за медленной диффузией реагирующих веществ и продуктов реакции. Реакцию в газовой фазе можно связать с отдельными соударениями молекул, чтобы объяснить необходимый при этом перенос энергии и акт химического превращения. Реакции, происходящие в растворе, похожи на твердофазные в том смысле, что отдельные молекулы реагирующих веществ до соударения находятся в контакте с молекулами растворителя, а не являются изолированными. Скорость химического превращения здесь зачастую, но не обязательно всегда значительно меньше скорости диффузии. На начальном этапе исследований реакций в растворах молекулярной природы окружающей среды полностью пренебрегали, а растворитель считали однородной диэлектрической средой. Это позволяло рассматривать процессы как квазигазофазные реакции, перенос энергии в которых (через среду растворителя) всегда осуществлялся быстрее, чем любое химическое превращение. Такое весьма рискованное приближение довольно успешно применялось при изучении типичных органических реакций, так как о молекулярной природе растворителя и его взаимодействии с реагентами в этом случае вспоминали лишь тогда, когда рассматривались более тонкие детали механизмов. К сожалению, во многих неорганических реакциях игнорировать молекулярную природу растворителя нельзя даже в первом приближении при изучении механизма реакции необходимо прежде всего детально рассмотреть процесс сольватации, т. е. непосредственное взаимодействие растворителя и растворенного вещества. [c.14]

    Все большее применение находит метод микрорентгеноспект-рального анализа (локальный микроанализатор), идея которого заключается в следующем. Образец с хорошо отполированной поверхностью облучается узким сканирующим электронным пучком диаметром около 1 мкм. Характеристическое рентгеновское излучение, испускаемое при облучении атомами образца, анализируется электронным логическим блоком. Подвергая такому исследованию поперечные сечения образцов, содержащие реагенты и продукт взаимодействия, удается изучить распределение компонентов и фаз в зоне реакции, установить геометрию фронта реакции и найти характер и последовательность превращений при твердофазном взаимодействии. В ряде случаев полезную информацию о механизме реакции дает применение метода гамма-резонансной спектроскопии (эффект Мессбауэра), а также методов инфракрасной и эмиссионной микроскопии [71]. [c.117]


Смотреть главы в:

Твердофазные реакции -> Методы исследования механизма твердофазных реакций




ПОИСК





Смотрите так же термины и статьи:

Метод механизм

Реакция исследование



© 2025 chem21.info Реклама на сайте